Imperfect Choice or Imperfect Attention? Understanding Strategic Thinking in Private Information Games

ISABELLE BROCAS
University of Southern California and CEPR

JUAN D. CARRILLO
University of Southern California and CEPR

STEPHANIE W. WANG
University of Pittsburgh

and

COLIN F. CAMERER
California Institute of Technology

First version received July 2010; final version accepted June 2013 (Eds.)

To understand the thinking process in private information games, we use “Mousetracking” to record which payoffs subjects attend to. The games have three information states and vary in strategic complexity. Subjects consistently deviate from Nash equilibrium choices and often fail to look at payoffs which they need to in order to compute an equilibrium response. Choices and lookups are similar when stakes are higher. When cluster analysis is used to group subjects according to lookup patterns and choices, three clusters appear to correspond approximately to level-3, level-2, and level-1 thinking in level-k models, and a fourth cluster is consistent with inferential mistakes (as, for example, in QRE or Cursed Equilibrium theories). Deviations from Nash play are associated with failure to look at the necessary payoffs. The time durations of looking at key payoffs can predict choices, to some extent, at the individual level and at the trial-by-trial level.

Key words: Behavioral game theory, Cognitive hierarchy, Mousetracking, Eyetracking, Level-k, Betting games.

JEL Codes: C72, C92

1. INTRODUCTION

Equilibrium analysis in game theory is a powerful tool in social and biological sciences. However, empirical choices often deviate from equilibrium in ways that are consistent with limited strategic thinking and imperfect response (e.g. Camerer, 2003). Private information games are especially interesting because strategically naïve agents do not fully understand the link between the information and choices of other agents. Many types of lab and field evidence suggest some
players do not make rational inferences in private information games. Understanding strategic thinking in private information games is important because they are such popular tools for modelling contracting, bargaining, consumer and financial markets, and political interactions. If there is widespread strategic naivete, then distortions due to hidden information can be larger than predicted by equilibrium analysis, and ideal policy responses may be different (e.g. Crawford, 2003).

In this article, we consider two-person betting games with three states and two-sided private information. Players privately observe a state-partition (either one or two of the three states) and choose whether to bet or not bet. Unless both players bet, they earn a known sure payoff. If both bet, they earn the payoff corresponding to the realized state. These games capture the essence of two-sided adverse selection. We also get information about decision processes by hiding the payoffs in opaque boxes. These are only revealed by a ‘lookup’, when the computer mouse is moved into the box and a mouse button is held down. As in earlier experiments, subjects get feedback about the state after each trial, so they can learn.

Lab and field evidence suggest there are strategic thinking limits in many different games with private information. This evidence can be explained by two types of theories. (1) Imperfect choice; or (2) Imperfect attention.

By imperfect choice, we mean stochastic response to payoffs (rather than optimization) or a simplification of some structural feature of likely behaviour. Quantal response equilibrium (QRE) assumes players’ beliefs are statistically accurate but players respond noisily to expected payoffs (McKelvey and Palfrey, 1995). Two other theories assume optimization, but also assume an imperfection in recognizing aspects of behaviour. In cursed equilibrium (CE), players correctly forecast the distribution of actions chosen by other players, but underestimate the link between the private information and the strategies of other players (Eyster and Rabin, 2005). In analogy-based expectation equilibrium (ABEE), players draw analogies between similar player types and use coarse statistics within analogy classes to form beliefs (Jehiel, 2005; Jehiel and Koessler, 2008; Huck et al., 2011). These different theories can all potentially explain non-equilibrium choices. However, they reflect fundamentally different cognitive processes.

By imperfect attention, we mean that some players do not attend to all elements of the game structure. CH and level-k models were first defined as specifications of how players beliefs about other players’ choices can be incorrect. However, early in the development of these models it was clear, for many researchers, that particular incorrect beliefs were associated with imperfect attention (e.g. Camerer et al., 2004; Crawford, 2008). Then such models can be tested by a combination of choice and attention data, such as mouse-based or camera-recorded lookups. A strong form of this joint choice-attention specification of level-k posits, for example, that if level 0 players randomize equally, then level 1 players will make choices that maximize expected payoff given those beliefs and will not need to look at the other players’ payoffs (although they must still be aware of their opponents’ set of possible actions).

1. Examples include the winner’s curse in common value auctions (Kagel and Levin, 2002), overbidding in private value auctions (Crawford and Iriberri, 2007), the lemons problem in adverse selection markets (Bazerman and Samuelson, 1983; Charness and Levin, 2009); settlements in zero-sum games (Carrillo and Palfrey, 2009); and over-communication in sender-receiver games (Cai and Wang, 2006; Wang et al., 2010). Field examples include overbidding in offshore oil lease auctions (Cai et al., 1971), consumer reactions to disclosure of product quality (Mathis, 2000; Jin and Leslie, 2003; Brown et al., 2012), and excessive trading by individual stock investors (Odean, 1999).

2. For example, Camerer, Ho, and Chong wrote (2004, p. 891): “Since the Poisson-CH model makes a prediction about the kinds of algorithms that players use in thinking about games, cognitive data other than choices like… information lookups… can be used to test the model.” The earliest Mouselab studies in economics begun more than 10 years earlier (Camerer et al., 1993; and especially Johnson et al., 2002) clearly treated levels as attention patterns, as did the more formal analysis in Costa-Gomes et al. (2001).
The imperfect choice theories mentioned above could conceivably be associated with some type of imperfect attention as well, but no such association has been proposed. Therefore, we do not attempt to test QRE, CE, and ABEE using the attentional data.

Note that whether deviations from equilibrium are due to imperfect choice or imperfect attention (or both) is important for making predictions and giving advice. An imperfect attention account implies that variables like time pressure, information displays, and explicit instruction guiding attention could change behaviour (as shown by Johnson et al., 2002).

Here is a summary of the basic results. As in previous related experiments, subjects play Nash equilibrium about half the time in simple situations (as defined later) and a quarter of the time in more complex situations. The combination of choices and lookup analysis suggest two clearly different types of non-equilibrium choices: some subjects look at the payoffs necessary to play the equilibrium choice but often fail to do so; in other cases, subjects do not look at all the necessary payoffs and also do not make equilibrium choices. At the same time, lookup is an imperfect but reasonably good predictor of Nash choice: the likelihood of equilibrium behaviour is two to five times greater among subjects who look at the necessary payoffs.

The analysis at the individual level suggests heterogeneity in both lookups and choices. Subjects can be (endogenously) classified into four clusters using both measures. In cluster 1, subjects usually look at the necessary payoffs and play Nash but this cluster is small. Clusters 2 and 3 look at the necessary payoffs and usually play Nash in the simpler situations, but look and choose less strategically in the more complex situations. In cluster 4—the most common—subjects spend less total time making choices, look at necessary payoffs less often, and rarely play Nash. Differences in lookup patterns can be used to predict choice with some reliability.

Heterogeneous clustering suggests an approximate fit with the level-k model. Indeed, payoffs in our game are such that a level 1 player should never look at the necessary payoffs and never play the Nash equilibrium strategy. A level 3 should always look at the necessary payoffs and always play Nash. Finally, a level 2 should behave like a level 3 in the simple situations and like a level 1 in the complex ones. The choice and lookup data suggest that clusters 1 and 4 correspond approximately to levels 3 and 1, respectively and cluster 3 is a reasonable candidate for level 2.

More generally, apart from a few rational players (12% in cluster 1) there appear to be a majority of players showing imperfect attention (67% in clusters 3 and 4) and a few others who exhibit imperfect choice (21% in cluster 2).

Actual earnings are interesting. Playing Nash is an empirical best response in the simple situations but not in the complex ones. The first cluster does not earn the most money because they act as if they overestimate the rationality of their opponents in complex situations (which misses the opportunity to earn more by exploiting mistakes of others). The middle clusters earn the most. The fourth cluster, who “underlook” compared to theory and rarely play Nash, earns the least. The highest earnings of the middle clusters could be due to either “optimal inattention” (it does not pay to be sophisticated when rivals are not) or “luck”. Our analysis tentatively favors the second explanation, although more research in this direction is needed.

Overall, this article sheds light on the question: Why do people seem to underestimate adverse selection? Since theories of imperfect choice and imperfect attention could both explain the choice data, measuring information use directly is an efficient way to contribute to resolving the empirical puzzle. Also, equilibrium play in these games sometimes requires players to look up the numerical value of payoffs which they know they will never receive. Paying this kind of attention-to-impossible-payoffs is quite counterintuitive and therefore highly diagnostic of sophisticated strategic thinking.

3. Other theories of potential interest include asymmetric logit equilibrium (Weiszacker, 2003) and heterogeneous QRE (Rogers et al., 2009)
Before proceeding to the formal analysis, we review the related literature. Three previous experimental studies have reported behaviour in private information betting games: Sonsino et al. (2002), Sovik (2009), and Rogers et al. (2009). All these papers find substantial rates of non-equilibrium betting, and surprisingly little learning over many trials. Similar results are also obtained in simple experimental assets markets in which no trade is predicted to occur (Angrisani et al., 2011; Carrillo and Palfrey, 2011). Compared to the previous betting game experiments, our games have two novel properties (besides “mousetracking”): Nash theory predicts a mixture of betting and no-betting across the games (so there is a rich statistical variety of behaviour) and we consider 3-state games that are simpler than the 4-state or 8-state games in the existing literature.

Several studies have used attention measures to understand cognitive processes in economic decisions. These techniques were first applied to games by Camerer et al. (1993), who found that a failure to look ahead to future payoffs was linked to non-equilibrium choices in alternating-offer bargaining (Johnson et al., 2002). Information acquisition measures have then been used to study forward induction (Johnson and Camerer, 2004), matrix games (Costa-Gomes et al., 2001; Devetag et al., 2013), two-person “beauty contest” games (Costa-Gomes and Crawford, 2006), learning in normal-form games (Knoepfle et al., 2009), and cheap-talk games (Wang et al., 2010). Crawford (2008) summarizes these findings and argues for the value of lookups.

2. THEORY AND DESIGN

2.1. Theory: equilibrium

We consider the following game. Nature draws a state, A, B, or C, with equal probability. Player 1 learns whether the state is C or not C (that is, A or B) and player 2 learns whether the state is A or not A (that is, B or C). Players choose to bet on the state (action Y for “yes”) or to secure the sure payoff S (action N for “not bet”). If either of them chooses to not bet, they each earn the number in the box under the sure payoff S. If both choose to bet, the payoffs for players 1 and 2 depend on the state A, B or C and are shown in the top and bottom rows of the matrix, as described in Figures 1 or 2 for example. To imagine practical applications, think of imperfect knowledge of the state that results from coarse categorization or imperfect perception. So, if the states are Bad, Medium and Good, some players 1 may have expertise in detecting Good states but cannot distinguish Bad from Medium, whereas some players 2 have expertise in detecting Bad states but cannot distinguish between Good and Medium. Importantly, while player 1 cannot distinguish Bad from Medium, he knows that player 2 can (and vice versa). Formally, there are two information sets for each player: one is a singleton and the other contains two states.

Each information set of a game with the structure described above falls into one of three situations, characterized by the type of knowledge required for equilibrium choice. We call them F, D1, and D2. Figure illustrates these three situations using the payoffs of one of the games in the experiment.

The left table illustrates the Full information, F situation. In F, Player 2 has a singleton information set {A}. To find the equilibrium action, she only needs to compare the two sure
payoffs, [2A] and [5]. In this example, she knows that if she bets she will obtain 0 (if the other player bets), which is lower than the sure payoff \(S = 10 \). We call the set of information lookups that is necessary to choose the equilibrium action the “Minimum Information Necessary” (MIN).

In this F situation, the MIN set is \([2A, S]\).

The table in the center illustrates the 1-step Dominance, D1 situation. Player 1 is in the information set \([A, B]\). She must look at [2A] to determine if Player 2 will bet in [A] and also look at her payoffs in [1A] and [1B] (as well as [S], of course). This process is strategic because it requires looking at another player’s payoff, realizing that the opponent has different information sets (which is explained in the instructions), and making an inference assuming the simplest level of rationality (dominance) of the opponent. In this example, once Player 1 realizes that Player 2 will not bet in [A], she has no incentive to bet in \([A, B]\) as the payoff in [1B] is lower than [5].

The right table illustrates the 2-step Dominance, D2 situation. Player 2 is in the information set \([B, C]\). Whether or not Player 1 will bet in [C] does not fully determine her decision. She must deduce whether Player 1 will bet in [A, B]. That deduction requires looking at her own [2A] payoff. Thus, she must look at all of her own payoffs [2A, 2B, 2C], as well as [1A, 1B] (and [S]). Notice also that looking at [2A] means looking at a payoff she knows with certainty will not occur (an impossible counterfactual). This is quite counterintuitive and is therefore a clear hallmark of strategic reasoning.

These three situations can be unambiguously categorized from simplest to most complex, based on the degree of strategic thinking required. F is a trivial situation: the information required to play correctly is minimal and no strategic thinking is involved. D1 is a simple situation: it involves a more subtle reasoning and paying attention to the rival’s payoff. D2 is a complex situation, as it requires a further step in reasoning: the subject must anticipate how a rival will behave in D1 and best respond to it. It is then possible to perform comparative statics on behaviour as a function of the complexity of the situation.

Finally, it is crucial to realize that MIN sets are defined from the perspective of an outside observer who is aware of the payoffs in all boxes. Our subjects, who need to look at the boxes to reveal the payoffs, have no way of knowing a priori whether they face a D1 or a D2 situation. It is therefore unlikely that they will open only the boxes in the MIN set. For that reason, in our analysis we will only distinguish between the subjects who open all the MIN boxes (and possibly some other that are not in MIN) from those who open a strict subset of the MIN boxes (and, again, possibly some other that are not in MIN). The former are coded “MIN” and the latter are coded “notMIN”. Subjects using different information processing algorithms will look at payoffs

7. In fact, it is not necessary to look at [1A] in D1 or D2. Player 1 anticipates that Player 2 will not bet in [A], and therefore does not need to check her own payoff in that state. For analogous reasons, Player 2 in D2 does not need to look at [2B]. Overall, strictly speaking, MIN in D1 is \([1B, 2A]\) and MIN in D2 is \([1B, 2A, 2C]\). This more refined definition would make little difference in the data analysis since a player who looks at one payoff in an information set almost invariably looks also at the other payoff in that set.
in different orders. However, they will have to open all the MIN boxes if they are to infer the equilibrium strategy.

2.2. Experimental games

Figure 2 shows the five payoff variants used in the experiment. (Game 1 is the example that was used above for illustration.) Among the 10 two-state information sets, 6 are in D1 (3 predict betting and 3 predict no betting) and 4 are in D2 (2 predict betting and 2 predict no betting). Games are designed to minimize the number of two-state information sets in which na"ively comparing the average of the two payoffs to S gives the Nash choice (the only ones are \{B, C\} in game 3 and \{A, B\} in game 5). Also, because Nash theory predicts betting in some games and not in others, mistakes can occur in both directions (overbetting as well as underbetting).8

Theoretical predictions from Nash equilibrium are shown in Figure 3 for the two-state information sets, with “Y” denoting the choice to “bet” (Yes) and “N” the choice to “not bet” (No). We include the steps-of-dominance situation in parentheses (D1 or D2). The asterisk * appears when the equilibrium choice coincides with a naïve strategy that would consist of betting if the average of the payoffs in the information set exceeds the sure value S (as a non-strategic player would do for example). Predictions in the singleton information sets are omitted as they simply consist in betting if and only if the state payoff exceeds the sure payoff. These predictions are all made under the assumption of risk neutrality. Sufficiently risk averse or risk loving attitudes could lead to different equilibrium predictions in some of the games. Our subjects, however, participate in all the games so within-subject choice patterns suggest that risk attitudes are unlikely to be the primary factor behind equilibrium deviations. Furthermore, Rogers et al. (2009) controlled for risk attitudes by using gambles as outside options and still found substantial non-equilibrium betting.9

8. Earlier studies have been criticized for predicting “inaction” in all trials (never bet, never trade). With boundary predictions of this sort, any deviation from equilibrium will look like a systematic bias. It is also possible that subjects would presume that experimenters would not create a game in which they are always supposed to take the same (in)action. In our setting, they could just as easily underbet as overbet.

9. We focus on the unique Bayesian Nash Equilibrium (BNE) that survives iterated elimination of weakly dominated strategies. There are other BNE (e.g. both players choosing always N) which we neglect.
2.3. Design and procedures

Our experiments use a “Mousetracking” technique which implements a small change from previous methods. Information is hidden behind blank boxes. The information can be revealed by moving a mouse into the box and clicking-and-holding the left button down. If subjects release the button the information disappears. Mousetracking is a simple way to measure what information people might be paying attention to. It also scales up cheaply because it can be used on many computers at the same time.

There were six Mousetracking sessions run in SSEL at Caltech and CASSEL at UCLA. All interactions between subjects were computerized, using a Mousetracking extension of the open source software package “Multistage Games” developed at Caltech. In each session, subjects played betting games with the five sets of payoffs described in Figure 3. Furthermore, each game was flipped with respect to player role and states to create five more games where Player 1 in the original game had the mirror image payoffs of Player 2 in the other version and vice versa. Subjects played this set of ten games four times for a total of 40 trials in each session. Subjects were randomly re-matched with another subject and randomly assigned to be either Player 1 or Player 2 in each trial. After each trial they learned the true state, the other player’s action and their payoff. Subjects had to pass a short comprehension quiz as well as go through a practice trial to ensure that they understood the rules before proceeding to the paid trials. A survey including demographic questions, questions about experience with game theory, poker and bridge, as well as the three-question Cognitive Reflection Test (CRT: Frederick, 2005) was administered at the end of each session.

Five of the six sessions constitute what we will call hereafter the “Baseline” treatment, in which a total of 58 subjects participated. Subjects earned $20 on average plus a $5 show-up fee. The sixth session was a “High stakes” treatment in which we multiplied the earnings by 5 through a change in the conversion rate. Thus the payoffs in the boxes did not differ from the baseline sessions and any difference we observe in lookup and choice patterns should be attributed to the incentive effect. Twenty subjects participated in that session and earned $100 on average plus the same $5 show-up fee.

In earlier versions of Mouselab, subjects do not have to hold down a button to keep information visible. This small innovation of requiring click-and-hold is intended to help ensure that subjects are actually attending to the information. It is unlikely to make a big difference compared to other techniques. Nonetheless, it eliminates the necessity to filter out boxes opened for a “short” time (where the minimal duration is defined by the experimenter). It also ensures that an unusually high time spent in a box reflects a long fixation and not to the subject having left the mouse in that position.

Cheap scaling-up is an advantage for studying multi-person games and markets compared to single-subject eye-tracking using Tobii or Eyelink camera-based systems, which cost about $35,000 each.

Documentation and instructions for downloading the software can be found at http://multistage.ssel.caltech.edu.
We ran 2 additional sessions, the “Open boxes” treatment, in CASSEL at UCLA. The experimental design was the same as in the baseline experiment except that the Mousetracking technique was not implemented, and the subjects were facing a standard screen with visible payoffs. A total of 40 subjects participated in those sessions and earned $20 on average plus a $5 show-up fee. These sessions allow us to assess whether Mousetracking acts as a constraint on information processing.

No subject participated in more than one session. Table 1 summarizes the 8 sessions.

3. AGGREGATE ANALYSIS

3.1. Equilibrium play in the baseline and open boxes treatments

We first report the frequency of Nash play in the two baseline populations, Caltech (sessions 1 and 2) and UCLA (sessions 3, 4, and 5), and in the open boxes treatments (sessions 7 and 8 both run at UCLA).

Equilibrium play in F is 99% at Caltech and 96% at UCLA in baseline treatments, and 95% at UCLA in the open boxes treatment. Proportions of equilibrium play in the two-state information sets (D1 and D2) are reported in Figure [SI]. Because equilibrium play in the singleton information sets (F) is always close to 1, we omit it to aid visual clarity.

The proportion of equilibrium behaviour is generally quite low (random behaviour would predict 0.50). Equilibrium behaviour differs across complexity of the situation (D1 v. D2) and, to a lesser extent, across populations (with Caltech students playing closer to Nash than UCLA students), but there are no systematic differences between games in which subjects are or are not supposed to bet. The overall betting probabilities are also quite similar between our study and Rogers et al. (2009) and Sonsino et al. (2002).

The frequency of equilibrium choice with open boxes is similar to the Caltech baseline treatment for some information sets and to the UCLA baseline treatment for the others. We ran a series of Mann–Whitney tests (both pooling all baseline sessions and treating Caltech and UCLA baseline sessions separately) to compare the distribution of play in both treatments and we found that the difference in behaviour was marginally statistically significant only for the UCLA baseline population in D1 (at the 5% level). This implies that subjects are not failing to play Nash due to imperfect memory or search costs. Our results, which may surprise some readers, are in fact in accordance with previous studies showing that behaviour is very similar in sessions with open and closed boxes (Costa-Gomes et al., 2001; Johnson et al., 2002). If there is

13. This counters the suggestion that excessive betting in previous betting game experiments have been driven by an experimenter’s demand effect or by the excitement of an uncertain payoff.
Empirical frequency of equilibrium play in D1 and D2 by information set and game. Bold frequencies are cases where Nash predicts betting.

Table

<table>
<thead>
<tr>
<th>Information Set</th>
<th>Game 1</th>
<th>Game 2</th>
<th>Game 3</th>
<th>Game 4</th>
<th>Game 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 .51</td>
<td>1 .65</td>
<td>1 .76</td>
<td>1 .29</td>
<td>1 .72</td>
<td></td>
</tr>
<tr>
<td>2 .45</td>
<td>2 .73</td>
<td>2 .79</td>
<td>2 .51</td>
<td>2 .13</td>
<td></td>
</tr>
<tr>
<td>UCLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 .58</td>
<td>1 .39</td>
<td>1 .60</td>
<td>1 .32</td>
<td>1 .59</td>
<td></td>
</tr>
<tr>
<td>2 .33</td>
<td>2 .46</td>
<td>2 .88</td>
<td>2 .39</td>
<td>2 .03</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 .59</td>
<td>1 .58</td>
<td>1 .72</td>
<td>1 .32</td>
<td>1 .72</td>
<td></td>
</tr>
<tr>
<td>2 .35</td>
<td>2 .70</td>
<td>2 .74</td>
<td>2 .51</td>
<td>2 .06</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4

Empirical frequency of equilibrium play in D1 and D2 by information set and game. Bold frequencies are cases where Nash predicts betting.

3.2. **Lookups and play in the F situation**

Recall that F corresponds to a trivial individual decision-making problem in a singleton information set. As expected, subjects look at MIN and perform well. More precisely, subjects look at MIN 97% (Caltech) and 95% (UCLA) of the time and then play the equilibrium action 99% (Caltech) and 96% (UCLA) of the time. This suggests that both populations understand the fundamentals of the game: they compare the payoff of betting with the sure payoff and choose the largest of the two. More interestingly, the subjects who look at MIN and play Nash spend on average 57% (Caltech) and 60% (UCLA) of the time in the 2 MIN boxes and the rest in some of the 5 other boxes. They also look at all 7 payoff boxes of the game only 18% (Caltech) and 22% (UCLA) of the time. This suggests that subjects look at the payoffs strategically and succinctly.

Behaviour in this situation sheds some light on social preference theories. Suppose that players have social preferences over the payoffs of others, in the sense that they are willing to sacrifice money to reduce inequality (Fehr and Schmidt, 1999), benefit the worst-off player, or increase the total payoff (Charness and Rabin, 2002). Depending on the model and parameters of social preferences, we could predict in which information sets these subjects would deviate from Nash. Empirically, however, such sacrificial non-Nash behaviour is extremely rare in the simplest F situation, when some social preferences might predict Nash deviations most clearly.

14. As we will see later (Section 5), behaviour is also similar with high stakes. Thus, contrary to the predictions of a cost-benefit search theory with option value of unveiling information, lowering the cost of search (open boxes) or increasing the benefit (high stakes) has a negligible marginal impact on behaviour.

15. Consider Player 2 in game 5 state [A]. While the Nash choice is to bet, an inequity-averse player might sacrifice and not bet. Similarly, Player 1 in game 4 state [C] could bet contrary to the Nash solution due to efficiency concerns.
3.3. Order of lookups

In this section, we address the sequence of lookups in D1 and D2. Note that subjects look at [S] 98% of the time in both D1 and D2. We therefore concentrate on the algorithm they use to look at the payoffs in the 6-box matrix. In a given trial, a subject reveals one box at a time and may need to open the same box several times. The actual sequence of lookups is difficult to analyse, in part due to the large number of lookup combinations and transitions over the 6 boxes. However, we are interested primarily in the first-order properties of sequencing. We consider a simple measure that allows us to extract that information by measuring lookups in information sets as opposed to lookups in individual boxes. That is, we are not interested in whether a player 1 in information set \{A, B\} reveals first box [1A] or box [1B], but rather if and when he reveals any of these boxes. Moreover, we restrict to the first time there is a lookup in one of the boxes of an information set, and ignore the subsequent clicks on boxes in that information set.

Given there are 4 information sets, each of them can be opened in the first, second, third, fourth position or not at all. For expositional purposes, we take the perspective of Player 1 in \{A, B\} and analyse the sequence chosen to reveal [1A,1B], her own payoffs in the states that can realize, [1C], her own payoff in the state that cannot realize, [2A], the payoff of her rival if she is fully informed, and [2B,2C], the payoffs of her rival in her two-state information set. Given the sequence is similar across populations, we pool Caltech and UCLA subjects together (a series of two-sample K-S tests showed that the distributions of sequences were not statistically different). Table 2 reports this information.

The order in which boxes are open is almost identical between D1 and D2 (we ran two-sample K-S tests to compare the distribution of sequences in D1 and D2 and found no statistical difference). The subject’s own possible payoffs, [1A,1B] which are most salient, are revealed first and the sure payoff their rival can obtain [2A] is revealed second. This is quite reasonable: since players do not know a priori whether they face a D1 or a D2 situation, they look first at the “most natural” boxes. The payoffs of the rival in the two-state information set [2B,2C] is revealed third, as it contains a payoff that can realize. The proportions of these first three lookups are very similar between D1 and D2. Finally, the payoff of the player in the state that cannot realize [1C] is either revealed in the last position or not revealed at all. The former is more common in D1 whereas the latter occurs more often in D2. Interestingly, subjects in D1 do not need to reveal [2B,2C] whereas subjects in D2 do need to reveal [1C] in order to find the equilibrium. Hence, there is an average tendency to overlook in D1 and understand in D2.

Notice that there is no explicit cost for opening boxes. Still, some subjects stop quickly and do not check some boxes that turn out to be relevant. One possible interpretation is the existence of implicit costs of opening boxes. This interpretation, compatible with an optimal stopping rule, could rationalize limited search. However, the results obtained in Section 3.1 suggest that subjects

However, Non-Nash behaviour in these two scenarios is extremely rare (about 3% of the time). It could be that a player behaves pro-socially in D1 and D2 but not in F. However, we have no reason to suspect so. If anything, one would think that social preferences would be more prevalent in the simplest situations where the results of doing so are most palpable. The use of Mousetracking is also helpful in ruling out the influence of social preferences in these situations. Socially regarding players would need to look at payoffs of other players to decide whether it is worth deviating from Nash in order to express their social preference. But in F situations players generally look at the possible payoff of the other player only rarely and quickly.
play similarly with open and closed boxes. Therefore, implicit costs should not be attributed to the Mouseltracking design. If such costs exist, they are present in both treatments. The objective of the next sections is to correlate measures of lookups with equilibrium play.

3.4. Occurrence of lookups and equilibrium play

Having established the basic patterns of lookup search, we now study jointly attention and behaviour. *Occurrence of lookups* is the simplest measure of attention, and the most conservative one (the only assumption is that a payoff which is never seen cannot be used in decision making). It is a binary variable that takes value 1 if the box under scrutiny has been opened at least once during the game for any amount of time.\(^{16}\)

In order to distinguish between luck and strategic reasoning, we separate the * cases where Nash equilibrium coincides with the naïve averaging strategy from the cases where equilibrium and averaging differ. Table 3 provides basic statistics of the frequencies of behaviour, Nash/notNash, and lookups in the necessary payoff boxes, MIN/notMIN (recall that looking exactly at MIN and looking at MIN plus some other boxes are both recorded as “MIN”).

When averaging and equilibrium choices coincide (D1* and D2*), subjects play Nash significantly more often than when they do not but it is poorly or even negatively related to whether they look at MIN (rows 5 and 6). It suggests that these situations mix sophisticated (or cognitive) and naïve (or lucky) subjects.

When averaging and equilibrium choices do not coincide (D1 and D2), the average probability of playing Nash is low in D1 (0.63 and 0.48) and even lower in D2 (0.27 and 0.22), but not far from previous results on the betting game (Rogers et al., 2009). Subjects look more often at MIN in D1 than in D2. This is natural, since the MIN set is smaller in the former than in the latter case, and does not involve looking at a payoff the subject knows for sure will not realize. Interestingly and in sharp contrast to D1* and D2*, the frequency of equilibrium choice is 2 to 5 times higher when subjects look at MIN than when they do not. These differences suggest that lookups can

\(^{16}\) Given our software configuration, the minimal duration of a click is around 50 milliseconds. Although this may be too short for the eye and brain to perceive and process the information, we decided not to filter the data at all in an attempt to provide an upper bound on attention. (In contrast, filtering is unavoidable with eye-tracking because some durations are extremely short.)
TABLE 3
Occurrence of lookups and equilibrium play (st. errors clustered at subject level)

<table>
<thead>
<tr>
<th></th>
<th>% of observations</th>
<th>Caltech</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D1</td>
<td>D2</td>
<td>D1*</td>
<td>D2*</td>
<td></td>
</tr>
<tr>
<td>MIN-Nash</td>
<td>0.61 (0.065)</td>
<td>0.21 (0.044)</td>
<td>0.61 (0.077)</td>
<td>0.42 (0.082)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN-notNash</td>
<td>0.25 (0.039)</td>
<td>0.42 (0.052)</td>
<td>0.24 (0.065)</td>
<td>0.12 (0.044)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notMIN-Nash</td>
<td>0.02 (0.008)</td>
<td>0.06 (0.020)</td>
<td>0.10 (0.052)</td>
<td>0.37 (0.090)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notMIN-notNash</td>
<td>0.12 (0.036)</td>
<td>0.31 (0.060)</td>
<td>0.04 (0.033)</td>
<td>0.09 (0.040)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>MIN]</td>
<td>0.71 (0.052)</td>
<td>0.33 (0.056)</td>
<td>0.72 (0.075)</td>
<td>0.78 (0.075)</td>
<td></td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>not MIN]</td>
<td>0.15 (0.060)</td>
<td>0.15 (0.049)</td>
<td>0.70 (0.208)</td>
<td>0.81 (0.086)</td>
<td></td>
</tr>
<tr>
<td># observations</td>
<td>330</td>
<td>181</td>
<td>67</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% of observations</th>
<th>UCLA</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D1</td>
<td>D2</td>
<td>D1*</td>
<td>D2*</td>
<td></td>
</tr>
<tr>
<td>MIN-Nash</td>
<td>0.43 (0.056)</td>
<td>0.16 (0.038)</td>
<td>0.44 (0.069)</td>
<td>0.51 (0.072)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN-notNash</td>
<td>0.39 (0.048)</td>
<td>0.37 (0.051)</td>
<td>0.39 (0.055)</td>
<td>0.07 (0.036)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notMIN-Nash</td>
<td>0.05 (0.014)</td>
<td>0.06 (0.017)</td>
<td>0.15 (0.057)</td>
<td>0.37 (0.064)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notMIN-notNash</td>
<td>0.13 (0.044)</td>
<td>0.41 (0.061)</td>
<td>0.02 (0.017)</td>
<td>0.05 (0.027)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>MIN]</td>
<td>0.53 (0.057)</td>
<td>0.30 (0.057)</td>
<td>0.53 (0.065)</td>
<td>0.88 (0.062)</td>
<td></td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>not MIN]</td>
<td>0.27 (0.083)</td>
<td>0.13 (0.033)</td>
<td>0.86 (0.095)</td>
<td>0.87 (0.058)</td>
<td></td>
</tr>
<tr>
<td># observations</td>
<td>458</td>
<td>278</td>
<td>82</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

be predictive of equilibrium choice. From now on and unless otherwise stated, we will focus our attention on the more interesting case where the Nash and averaging strategies differ (D1 and D2).

We then compare the patterns of lookup and play between Caltech and UCLA. A two-sample Wilcoxon rank-sum test shows that the difference in the distributions across populations are statistically significant both in D1 (at the 1% level) and in D2 (at the 5% level). Subjects in Caltech play closer to the theory than subjects in UCLA. However, the reasons are different in the two situations. In D1, both populations look at MIN equally often but, conditionally on a correct lookup, Caltech subjects play Nash with substantially higher probability. In D2, Caltech subjects look correctly more often and, conditional on a correct lookup, they all play Nash roughly equally often.

Finally, we conduct a simple study of learning by dividing the sample into early play (first 20 trials of the sessions) and late play (last 20 trials). We find a consistent but modest increase in the frequency of MIN-Nash and a modest decrease in the total lookup duration (see Supplementary Appendix section 7.2.1 for details). In general and consistent with the previous literature on this game, some learning occurs but it is rather limited.

3.5. **Duration (attention) of lookups**

This section associates choices with duration of lookups. Contrary to Section 3.3, we are now interested in collecting precise information for each single box. Figure summarizes the average time spent by subjects opening all boxes (in seconds), the average number of clicks, and the proportion of the total time in each box. To study the relationship between lookup and choice, we build on Section 3.4 and classify observations in three types: MIN-Nash, MIN-notNash, and

17. The data is very similar if we record instead the percentage of clicks in each box. The average duration of a click varies a little between individuals but is relatively constant within individuals.
notMIN. Note that there is no information contained in Nash behaviour if the subject does not look at MIN, so all notMIN observations will henceforth be pooled together into one category.

Because duration is quite similar across populations, we pool Caltech and UCLA subjects together. As before, we express results as if the subject is always Player 1 in information set \{A, B\}.

Let us focus first on the observations where subjects look at MIN. The relative time spent in the different boxes is remarkably similar when we compare MIN-Nash and MIN-notNash within each situation. The only difference is that subjects who play correctly spend marginally more time thinking throughout the game. Lookups, however, are vastly different between situations. Differences are expected since MIN is defined differently in D1 and D2. At the same time, it suggests that subjects do not look at all the payoffs and then think about how to play the game. Instead, they look economically and sequentially at the information they think will be most relevant for decision-making. In particular, and as noted before, it makes sense that subjects spend a substantial amount of time at \[2A\] in D2 (a box not in MIN) since they cannot know a priori whether they face a D1 or a D2 situation. As for the differences, in D1 subjects barely look at payoffs in the state that cannot be realized (\[1C, 2C\]), whereas in D2 they spend almost as much time as in the other relevant boxes. Total duration increases significantly from D1 to D2, reflecting the fact that subjects realize the increased difficulty of the situation. Also, subjects spend similar amount of time looking at their own and at their opponent’s relevant payoffs. Taken together, the results suggest that subjects who look at MIN do think carefully and strategically about the game. They do or do not play Nash, but this has more to do with a cognitive capacity to solve the equilibrium (or an expectation about others’ behaviour) than with an inability to understand that the game has strategic elements.

Subjects in notMIN spend very little time thinking. In D1 they barely look at the payoffs of the other player or their payoff in \{C\}. From the lookup pattern, it seems that they simply

\[\text{Total duration in D1 and D2 [# of observations in brackets]. Underlined boxes are in the MIN set. Subject is Player 1 in \{A, B\}.} \]

\[
\begin{array}{cccccc}
\text{D1} & \text{MIN-Nash} & [399] & \text{MIN-notNash} & [259] & \text{notMIN} & [130] \\
1 & .17 & .19 & .06 & .14 & 2 & .18 & .18 & .05 & .14 & 1 & .29 & .27 & .09 & .31 \\
2 & .20 & .14 & .09 & & 2 & .16 & .18 & .10 & & 2 & .04 & .06 & .06 & \\
\text{Total duration: 6.4s} & \# clicks: 15.7 & \text{Total duration: 5.1s} & \# clicks: 14.4 & \text{Total duration: 2.2s} & \# clicks: 5.7 \\
\text{D2} & \text{MIN-Nash} & [82] & \text{MIN-notNash} & [178] & \text{notMIN} & [199] \\
1 & .13 & .13 & .13 & .09 & 1 & .16 & .15 & .12 & .12 & 1 & .22 & .20 & .01 & .21 \\
2 & .16 & .20 & .17 & & 2 & .15 & .16 & .14 & & 2 & .17 & .12 & .09 & \\
\text{Total duration: 11.4s} & \# clicks: 23.6 & \text{Total duration: 7.9s} & \# clicks: 20.7 & \text{Total duration: 3.7s} & \# clicks: 9.3 \\
\end{array}
\]

18. So, for example, box \[2A\] in game 1 is pooled together with box \[1C\] in game 4: in both cases it corresponds to a subject in D1 who is looking at the box of her rival in the full information set.

19. Players do look at more than just MIN in a number of trials but this type of “overlooking” has been observed in other studies on attention (Knoepfle et al., 2009; Wang et al., 2010). Since looking is costless, such overlooking could also be due to curiosity or limited memory.
average their payoffs and compare it to the sure alternative (77% of the total looking time is spent on \([1A, 1B, S]\)). As for D2, the distribution of lookups is similar to that of MIN types in D1. This suggests that some of these subjects realize the strategic component of the decision-making process. However, they fail to follow all the necessary dominance steps to find the equilibrium.

Transitions between boxes can also be informative although it turns out that they are very closely linked to occurrences (see Supplementary Appendix Section 7.1 for details). The main feature is that there are substantial transitions from player 1’s own payoff boxes to the crucial \([2A]\) in D1 for observations exhibiting Nash play. This is consistent with the remarkable fact that MIN-Nash players in D1 look more often at \([2A]\) than at their own \([1A, 1B]\) boxes.

3.6. Regression analysis: predicting choice from specific lookup data

In this section we use lookup data to predict choices. Table 4 presents OLS regressions at the subject level using average lookup durations (in seconds) for those payoffs in MIN which are most likely to be predictive of Nash behaviour. Looking at \([2A]\) is associated with an increase in the frequency of Nash play in D1. Looking at \([2B]\) and \([1C]\) is associated with an increase in the frequency of Nash play in D2. Those findings are consistent with the previous analysis: spending more time and attention on MIN results in a behaviour closer to equilibrium play. For both D1 and D2, we tried alternative models and found no effect of individual difference measures.

The second set of regressions treats each trial as a separate observation. Probit regressions are used to predict whether the choice is Nash (=1) or not (=0). The results are summarized in Table 5. The probability of playing Nash is affected by the time spent in \([2A]\) for D1 and by the time spent in \([2B]\) for D2. In D1 there is a significant positive effect of experience (match number). These trial-specific results are consistent with the OLS regression, although the \(R^2\) values are significantly smaller. One difference is that looking at \([1C]\) is not significant. There are no effects of individual difference measures.

3.7. Summary of aggregate analysis

The results obtained so far can be summarized as follows. (i) Behaviour is similar with open and closed boxes, so implicit costs should not be attributed to the Mousetracking design. (ii) Deviations from Nash equilibrium abound and reflect severe limits on strategic thinking. (iii) Occurrence of lookup is an imperfect but reasonably good predictor of Nash choice. (iv) Order of lookups is similar between D1 and D2 but not the total number of open boxes, which suggests
that subjects try to solve the game as they go and stop when they (rightly or wrongly) believe they have enough information to make a decision. (v) MIN-Nash and MIN-notNash players have similar lookup patterns, which indicates that sorting out the correct information is important but not sufficient for equilibrium play. (vi) Regression analysis also shows that lookup duration in some MIN boxes is predictive of Nash choice.

4. CLUSTER ANALYSIS

Research in experimental games have generally taken two approaches. One is the strategy followed in Section 3, which consists in studying aggregate behaviour. Another, which is more difficult and informative, is to do subject-by-subject type classification (see e.g. Costa-Gomes et al. 2001). In this section, we take an intermediate approach, which is to search for clusters of people (as in Camerer and Ho, 1999). The cluster approach includes the aggregate and subject-specific approaches as limiting cases. One advantage is that it creates statistical evidence on how well the extreme single-cluster and subject-specific approaches capture what is going on. Another advantage is that it is model free. It does not impose any model of heterogeneity, but rather describes the heterogeneity found in the data as it is. As such, clustering is one of many ways to organize the data and allows us to see if the clusters correspond to particular types or rules specified by theory.

Note that there are many combinations of lookups and behaviour as a function of the situation. Nash theory predicts subjects should use one specific combination: look at MIN and play Nash in both D1 and D2. There are at least three alternative theories to explain the data: Quantal response equilibrium (QRE), Cursed equilibrium (CE), and Level-k theories.

QRE is an equilibrium model with noisy best responses which makes the same prediction as Nash theory in terms of lookups: it is necessary to look at the MIN set to play at equilibrium. In a χ-cursed equilibrium, all subjects believe that with probability χ the opponent’s decision is independent of their private information and with probability $(1 - \chi)$ other subjects are also χ-cursed. The model predicts only two combinations of lookups. One group of players ($\chi < 1$) should look as predicted by Nash theory. The other (fully cursed subjects or $\chi = 1$) should completely ignore information-action links. They only need to look at their own payoffs, and act like level-1 players. (So strong support for level-1 is also evidence for fully cursed behaviour.)

Both QRE and CE seem to place many restrictions on the combinations of lookups and behaviour in our game which do not match the heterogeneity in our data. The level-k model

TABLE 5

Probit regression on probability of Nash play (st. errors clustered at subject level)

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th></th>
<th>D2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coefficient</td>
<td>st. error</td>
<td>coefficient</td>
<td>st. error</td>
</tr>
<tr>
<td>Total duration</td>
<td>1.2×10^{-5}</td>
<td>1.8×10^{-5}</td>
<td>-2.0×10^{-5}</td>
<td>2.1×10^{-5}</td>
</tr>
<tr>
<td>Duration in [2A]</td>
<td>2.7×10^{-4}*</td>
<td>1.4×10^{-4}</td>
<td>-1.1×10^{-4}</td>
<td>0.7×10^{-4}</td>
</tr>
<tr>
<td>Duration in [1C]</td>
<td>—</td>
<td>—</td>
<td>2.8×10^{-4}*</td>
<td>0.8×10^{-4}</td>
</tr>
<tr>
<td>Experience (trial #)</td>
<td>0.0134***</td>
<td>0.0047</td>
<td>0.0054</td>
<td>0.0067</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.4535***</td>
<td>0.1682</td>
<td>-1.0979***</td>
<td>0.1936</td>
</tr>
<tr>
<td># Observations</td>
<td>788</td>
<td>459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.06</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significant at 10% level, ** 5% level, *** 1% level.
offers clearer predictions about both lookups and choices, so it might be the most natural theory to test with our data.20 We describe the level-k model in detail in the next subsection.

4.1. Level-k

This section describes one version of how “level-k subjects” look and choose in this game. We use the level-k specification rather than the cognitive hierarchy one because it allows us to make crisp parameter-free predictions about lookup and choices for each level.21

The first step is to define the behaviour of a level-0 subject. We assume that a level-0 randomizes between betting and not betting in all information sets, ignoring their information.22

A level-1 player best responds to level-0. Because she believes others randomize, she only needs to look at boxes in her information set, average payoffs, compare it to \([S]\), and choose the best option. If we restrict the analysis to situations in which this naïve strategy differs from Nash play, level-1 agents should never play Nash in D1 or D2 (see Supplementary Appendix Section 7.5 for the case where Nash coincides with averaging).

Level-2 players best respond to level-1. Subjects must therefore open the boxes a level-1 would open to deduce the level-1 action, and then determine her own best response. A level-1 opponent with information set \([A]\) will open \([2A, S]\) and a level-1 opponent with information set \([B, C]\) will open \([2B, 2C, S]\). A level-2 subject then needs to open these boxes and also open \([1A, 1B]\) to figure out her best response. Given this type of reasoning, a level-2 subject will inevitably miss \([1C]\). This means that in D1 situations she will look at MIN, but in D2 situations she will not. In our games, payoffs are designed in such a way that level-2 agents always play Nash in D1 and do not play Nash in D2 except in Game 5.

A level-3 subject best responds to a level-2. She will open all the boxes, that is, she will always look at MIN. She may or may not play Nash given that she best-responds to a player who does not necessarily play Nash. However, in our games, payoffs are such that a level-3 subject always plays Nash. Any subject with level-k (\(k \geq 3\)) will also open all boxes. Because she best responds to a Nash player, she will also play Nash.

A level-3 subject best responds to a level-2. She will open all the boxes, that is, she will always look at MIN. She may or may not play Nash given that she best-responds to a player who does not necessarily play Nash. However, in our games, payoffs are such that a level-3 subject always plays Nash. Any subject with level-k (\(k \geq 3\)) will also open all boxes. Because she best responds to a Nash player, she will also play Nash

Figureb summarizes the lookups and choices of each level (X denotes a box the subject opens). Subjects who look at more boxes than a level-k but do not look at some of the boxes predicted by a level-k+1 are also categorized as level-k lookup.

4.2. Clusters based on lookup and choices

To find the clusters, we use the six aggregate statistics described in Section3 at the subject level: three combinations of lookup and play (“MIN-Nash”, “MIN-notNash”, and “notMIN”) in D1 and the same three combinations in D2. We then compute the percentage of trials in which each subject’s combination of lookup and choice is of either type in each situation. Each subject is thus measured by six percentages (or four variables since the three percentages for each situation must add up to one).

20 One could design other games where Nash theory, QRE, and CE also have rich lookup predictions. Such games would then be more suitable than the current one to compare the different theories.

21 Under cognitive hierarchy, in contrast, the predictions depend on the parameter \(\tau\) of the distribution of types. For example, if \(\tau\) is sufficiently low, then all levels above 0 could exhibit the same behaviour.

22 The most natural alternative is a dominance-satisfying level-0 who makes Nash choices in F. Since level-1 players always satisfy (strict) dominance, level-2 players in our specification act like level-1 players in this alternative specification. Therefore, if our specification is wrong relative to this alternative, it simply “mismatches” levels (inferring level 2 when it should be level 1).
We group the 58 subjects of our baseline experiment (see Table 1) in clusters based on these six percentages. There is a wide array of heuristic clustering methods that are commonly used but they usually require the number of clusters and the clustering criterion to be set ex ante rather than endogenously optimized. Mixture models, on the other hand, treat each cluster as a component probability distribution. Thus, the choice between different numbers of clusters and different models can be made using Bayesian statistical methods (Fraley and Raftery, 2002). Popular heuristic approaches such as “k means clustering” are equivalent to mixture models where a particular covariance structure is assumed.

We implement model-based clustering analysis with the Mclust package in R (Fraley and Raftery, 2006). A maximum of nine clusters are considered for up to ten different models and the combination that yields the maximum Bayesian Information Criterion (BIC) is chosen. Specifically, hierarchical agglomeration first maximizes the classification likelihood and finds the classification for up to nine groups for each model. This classification then initializes the Expectation-Maximization (EM) algorithm that does maximum likelihood estimation for all possible models and number of clusters combinations. Finally, the BIC is calculated for all combinations with the EM-generated parameters.

For our multidimensional data, the model with ellipsoidal distribution, variable volume, equal shape and variable orientation that endogenously yields four clusters maximizes the BIC at -1117. Table 6 shows the frequencies of Caltech and UCLA subjects in each cluster, listed from high to low according to frequency of Nash choice and MIN lookup. A graph in Supplementary Appendix Section 7.4 shows a projection of the clusters into two of the six dimensions as a visual aid.

As noted in Section 3, the Caltech and UCLA populations appear to be distinct but not widely so. This is confirmed in the cluster composition of Table 6. There are subjects from each population in every cluster, but a greater percentage of Caltech subjects are in clusters 1 and 2 compared to UCLA subjects.

Table 7 displays the empirical frequency of “MIN-Nash”, “MIN-notNash”, and “notMIN” in D1 and D2 for subjects in each cluster. It also gives the predicted proportions for the various level-k types as described in Section 4.1 and summarized in Figure 6.
Table 7 suggests that the lookup and choice behaviour of subjects in clusters 1, 3, and 4 roughly correspond to the predictions of levels 3, 2, and 1 in the level-k model. Subjects in cluster 2 do not correspond to any specific level.

To be more precise, cluster 1 looks at MIN and plays Nash reasonably often in both D1 and D2 situations (like a level-3 player) whereas cluster 4 plays Nash rarely and often does not look at MIN in D1 and D2 (like a level-1 player). Clusters 2 and 3 switch from playing Nash in D1 to not playing Nash in D2 but they exhibit different lookup patterns. Cluster 2 subjects look at MIN payoffs in both D1 and D2 whereas cluster 3 subjects look at MIN in D1 but not in D2, where they consistently miss $[1C]$. The lookups and choices of cluster 3 then correspond roughly to level-2 (MIN-Nash in D1 and NotMIN in D2) on the other hand, exhibit the lookups of a level-3 and the choices of a level-2. Their behaviour suggests that these individuals (21% of the population) always pay attention to the relevant information but make mistakes in complex situations (D2). It reinforces the idea that correct lookups are necessary but not sufficient for equilibrium choice.

There are interesting differences across clusters regarding the effect of experience on lookup and choices. (See Supplementary Appendix Section 7.2.2 for details). We find no evidence of learning by subjects in clusters 2 and 4. Subjects in cluster 1 show significant learning in D2 situations (MIN-Nash rates increase from 0.40 to 0.71) whereas subjects in cluster 3 learn in D1 situations (MIN-Nash rates increase from 0.44 to 0.69), suggesting that these subjects conform more to level 3 and level 2 over time. There are also socio-demographic differences across

23. Notice that level-1 predicts “notMIN” but also “notNash” in both D1 and D2. Among the 41% of cluster 4 subjects who do not look at MIN in D1, 7% play Nash and 34% do not. Similarly, among the 77% of cluster 4 subjects who do not look at MIN in D2, 6% play Nash and 71% do not. This provides further support for identifying cluster 4 as level-1 players.

24. In Supplementary Appendix Section 7.5 we analyse strategic choice in situations where Nash play coincides with naive averaging of payoffs in the information set. Nash play in D1 and D2 by subjects in cluster 4 and in D2 by subjects in cluster 3 increases substantially, a result that lends further support to the level-1 and level-2 interpretation of these clusters.
Male subjects with experience in game theory, poker or bridge, and who answer “cognitive reflection test” questions (Frederick, 2005) more accurately are more likely to be classified in cluster 1 and less likely to be in cluster 4. These suggestive results are encouraging but are not strongly established in our data.

4.3. Lookup statistics within clusters

Lookup frequencies and durations within clusters offer some clues about choice patterns. Some diagnostic summary statistics are presented in Table 8. It reports average total duration and average numbers of transitions. It also reports ratios of the time spent looking at the crucial MIN boxes containing other player’s payoffs and their impossible own payoff [1C], compared to the average time spent looking at one’s own possible payoffs.

Subjects in cluster 1 increase their looking the most—almost doubling it—from D1 to D2. The fact that they look longer at the MIN payoffs of the other player than they look at their own possible payoffs is a clear informational marker of strategic thinking. Subjects in cluster 2 spend a lot of total time looking, and spend about a third more time on D2 than on D1. They also make a lot of transitions. Subjects in cluster 3 show a similar pattern of looking to cluster 2 except they look at their own impossible payoff only half as often as they look at their own possible payoffs. Finally, looking patterns of cluster 4 subjects are entirely different. Duration is short and similar in D1 than in D2. Also, the ratios of looking time in the MIN payoffs of the other player and the impossible payoff box in D2 situations compared to their own possible payoffs are low.

The order of lookups is also interesting. Recall that the aggregate analysis revealed a typical order: [1A,1B], then [2A], then [2B,2C], and finally [1C] (or nothing). Table 9 reports the percentage of times the n-th lookup lies in the typical n-th information set. High numbers reveal that subjects are consistent with this typical order. We can see that most of the numbers up to the third lookup are above 50% suggesting that, on average, subjects in all four clusters open the boxes in the typical order. However, clusters differ in the proportion of times subjects adhere to this typical pattern and, more importantly, in the proportion of times they complete the full search.

Subjects in cluster 1 complete the search in D2, but they stop earlier in D1. They act as if they make a running choice as they open boxes and reveal information on a need-to-know basis.
Subjects in cluster 2 are more heterogeneous and disorganized. They tend to complete the full search more often than subject in Cluster 1, but the order of the search is more erratic. Subjects in cluster 3 exhibit similar sequencing patterns in D1 and D2 and tend to not complete the full search. Lastly, and consistent with the previous results, subjects in cluster 4 stop very early, completing only a small part of the typical sequence.

In Supplementary Appendix section 7.4 we perform a comparative study of occurrence and duration of lookups in each box by cluster. The analysis reinforces the main results of this section. Also, the behaviour of subjects in cluster 1 is particularly striking. Indeed, their looking patterns are a portrait of rationality: they look longer at \([2A]\) in D1 and at \([2B, 2C]\) and \([1C]\) in D2 than they look at their own payoffs \([1A, 1B]\). We also perform Probit regressions separately for all clusters and find similar results as in the aggregate analysis.

4.4. Are players optimally inattentive? Earning and learning

One important question we have postponed until now is whether, given the behaviour of other subjects, it is actually optimal to play Nash strategies. This is an empirical question, which the data can answer. If it is not always optimal, it raises the possibility that subjects who are trying to economize on search costs need not pay attention to all the payoffs in the MIN set. Indeed, attending to MIN payoffs could actually be an earnings mistake.

The first empirical observation is that playing Nash is optimal in D1 (averaging across the entire sample) but is not optimal in D2. The reason is that the average payoffs in the two-state information sets are often well above the sure payoff when not betting is the Nash choice (and vice versa). So if other players choose non-equilibrium betting often enough, then a player who bets obtains an average payoff above \([S]\). Because Nash play is optimal in D1 situations but not in D2, it is possible that cluster 1 players, who play Nash most often, may not earn the most money. Perhaps surprisingly, this is true.

Table 10 shows average expected normalized earnings for each cluster. It also shows for comparison the earnings that a level-k player would obtain. Notice that “level 0” corresponds to

<table>
<thead>
<tr>
<th>Cluster</th>
<th>1st lookup in ([1A, 1B])</th>
<th>2nd lookup in ([2A])</th>
<th>3rd lookup in ([2B, 2C])</th>
<th>4th lookup in ([1C])</th>
<th>Stop after 3rd lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.68</td>
<td>0.61</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td>2</td>
<td>0.69</td>
<td>0.52</td>
<td>0.65</td>
<td>0.53</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>0.90</td>
<td>0.53</td>
<td>0.67</td>
<td>0.31</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>0.92</td>
<td>0.44</td>
<td>0.55</td>
<td>0.19</td>
<td>0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster</th>
<th>1st lookup in ([1A, 1B])</th>
<th>2nd lookup in ([2A])</th>
<th>3rd lookup in ([2B, 2C])</th>
<th>4th lookup in ([1C])</th>
<th>Stop after 3rd lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.87</td>
<td>0.68</td>
<td>0.73</td>
<td>0.65</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>0.67</td>
<td>0.46</td>
<td>0.55</td>
<td>0.61</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>0.59</td>
<td>0.73</td>
<td>0.42</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>0.91</td>
<td>0.46</td>
<td>0.53</td>
<td>0.12</td>
<td>0.57</td>
</tr>
</tbody>
</table>

The normalization scales earnings such that a value 0 matches random choice and 1 matches empirical best response. To calculate expected earnings, we take the expectations over ex ante probabilities of each state of the information set, to smooth out luck (resp. bad luck) from ending up in a high (resp. low) payoff state of a particular information set.
TABLE 10

<table>
<thead>
<tr>
<th>Cluster</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.95</td>
<td>0.95</td>
<td>0.94</td>
<td>0.95</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>0.79</td>
<td>0.46</td>
<td>0.17</td>
<td>−0.34</td>
<td>0.0</td>
<td>−1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>−0.025</td>
<td>0.46</td>
<td>0.60</td>
<td>0.59</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>−1.0</td>
<td></td>
</tr>
</tbody>
</table>

the normalized earnings of a random player and “level 2” to the normalized earnings of a player who best responds to the empirical choice of others (Nash in F and D1 and notNash in D2). Also, “level 3+” corresponds to the normalized earnings of a subject who always plays the Nash equilibrium strategy.

All clusters are close to optimal in F situations, which is not surprising given the small proportion of mistakes in this situation.

In D1, clusters are clearly ranked from 1 to 4 in earnings. Since the empirical best response is Nash, the clusters that choose Nash most often also earn the most. Note that cluster 4 does much worse than random, since they play Nash less than half the time.

In D2, clusters 2, 3, and 4 earn similar amounts. From earnings alone, they seem to have an understanding based on the game structure, and perhaps history, that it does not pay to play Nash in these complex situations. Cluster 1 subjects—who frequently play Nash—earn about the same as random players, and less than any other cluster including the clueless cluster 4 (although not as little as a Nash player)! They represent an interesting case of people who analyze the game the most “rationally” but do not translate that into earnings. We can only speculate as to why cluster 1 players did not shift to notNash. Perhaps they were hoping to teach other players to play the equilibrium actions or perhaps they did not have enough observations to revise their erroneous beliefs about the other players’ types.

It is also instructive to compare earnings by cluster with earnings by level-k types. Clusters 1 and 4 are similar to levels 3+ and 1 in the earnings space, although cluster 1 does not do as bad in D2 as level 3+ and cluster 4 not as bad in D1 as level 1. This corroborates our findings in Section 4.2. Cluster 2 is the closest in earnings to level 2. However, as we noted earlier, they look at payoffs more like a level 3+ type.

Averaging across the three situations, subjects in cluster 2 earn the most. There are two possible reasons. One is that cluster 2 players are “worldly” (Stahl and Wilson, 1995) in the sense that they can compute Nash equilibrium, but they also manage to figure out when it pays to play it and when it does not. The support for this view is that cluster 2 subjects look at MIN almost always but have a much lower rate of Nash choices in D2 than cluster 1 subjects. A different interpretation is that subjects in cluster 2 are not thinking that shrewdly, but are simply lucky because enough other players deviate from Nash choices making notNash an empirical best response in D2. Several pieces of evidence point in that direction: (i) they earn significantly less than cluster 1 subjects

We also take the expectation over all possible payoffs if paired with all subjects who are in the other role with equal probability. A similar approach was used by Lucking-Reiley and Mullin (2006). This reduces variability introduced by the matching mechanism. The normalization uses random earnings for each subject (from choosing bet and no bet equally often) and earnings from empirically best response to the location-specific sample, which represents an upper bound. Each subject’s expected earnings in each game is then normalized by subtracting random earnings and dividing by the difference between the empirical best response earnings and random earnings.

26. In this respect, our two-action game is a handicap: when Nash and best response to empirical strategy differ, a player who deviates from Nash (whatever the reason) is categorized as playing best response.
in D1; (ii) they do not learn with experience; (iii) they look at the impossible \[1C\] payoff less than at their own possible payoffs; and (iv) they still get lower payoffs in D2 than the clueless cluster 4 subjects. Although we favour this second alternative, there is not enough evidence in our data for a firm conclusion. Future research should design tasks to better disentangle between these two possibilities.

The data can also say something about the possibility that players are “optimal inattentive”—i.e. it does not pay to look at MIN to choose the best strategies since other players are not playing Nash. This hypothesis is appealing but there is a lot of evidence against it.

First, these subjects are highly practiced using a mouse to retrieve information. The fact that they often look at notMIN boxes in F (40% of their search is on other boxes) reveals that the cost is low. The fact that choices are very similar with open boxes suggests that the cost may even be comparable to that of an eye fixation.

Second, learning appears to guide subjects to look at more of the MIN boxes over time, not less (see Supplementary Appendix Section 7.2 for details on learning effects). If subjects were learning to be inattentive in the face of non-Nash play, there would be a decline in MIN lookup occurrences, particularly in D2 situations where Nash strategies are played less often. The fact that MIN lookup increases or decreases very slightly over time in those situations suggests subjects are not learning to look less in the face of non-Nash play.

Third, the combination of looking times in Table 8 with earnings statistics in Table 10 shows there is generally a positive relation between looking and earning.

4.5. **Summary of results**

The cluster analysis reveals that lookup patterns over relevant information and conversion of this information into Nash choice are heterogeneous. Three clusters map roughly onto level-k thinking types. Cluster 4 corresponds to level-1 and cluster 1 corresponds to level-3. Cluster 3 shows a tendency in the direction of level-2 but not very sharply. Finally, the behaviour of subjects in cluster 2, who look like Nash players but deviate from equilibrium choice in complex situations, suggests a possible role for stochastic choice and imperfect responses, as in QRE. There is some learning by subjects in cluster 1 (for complex situations) and in cluster 3 (for simple situations). We also find that longer lookup durations are correlated with greater payoffs both in D1 and D2.

5. **HIGH STAKES**

We now turn to the high stakes (×5) treatment. In F, subjects played Nash 95% of the time and looked at MIN 90% of the time. These frequencies are similar to those in the baseline treatment. The proportions of Nash equilibrium play in D1 and D2 situations are reported in Figure 7.

The results are comparable to the frequencies obtained in the UCLA baseline treatment (see Figure 3). Subjects did not play Nash more often when stakes were high. The occurrence of look-up and behaviour is reported in Table 11. The results are also strikingly similar to the baseline (see Table 3). Subjects looked at MIN in the same proportions as in the baseline treatment and transformed it into Nash choice at comparable rates. If anything, MIN lookup with high stakes is not as good predictor of Nash choice as MIN lookup in the baseline treatment (rows 5 and 6).

Figure 8 reports durations in each box for each game. Total durations and durations per box are again similar to those observed in the baseline (see Figure 5). The only noticeable difference is

27. A different type of “rational inattention”, namely the idea that individuals are exogenously constrained in their capacity to process information, has been the object of recent research in macroeconomics (see e.g. Sims, 2003 and Woodford, 2008).
Table 11
Occurrence of lookups and equilibrium play with high stakes.

<table>
<thead>
<tr>
<th>% of observations</th>
<th>High Stakes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
</tr>
<tr>
<td>MIN-Nash</td>
<td>0.51 (0.030)</td>
</tr>
<tr>
<td>MIN-notNash</td>
<td>0.34 (0.029)</td>
</tr>
<tr>
<td>notMIN-Nash</td>
<td>0.07 (0.016)</td>
</tr>
<tr>
<td>notMIN-notNash</td>
<td>0.09 (0.017)</td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>MIN]</td>
</tr>
<tr>
<td>Pr[Nash</td>
<td>not MIN]</td>
</tr>
<tr>
<td># observations</td>
<td>271</td>
</tr>
</tbody>
</table>

Figure 7
Empirical frequency of equilibrium play in high stakes games (×5)

Table 12
Duration of lookups with high stakes [# of observations in brackets].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.17</td>
<td>.17</td>
</tr>
<tr>
<td>Total duration:</td>
<td>6.7s</td>
<td># clicks: 21.5</td>
<td>6.0s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17</td>
<td>.19</td>
</tr>
<tr>
<td>Total duration:</td>
<td>10.6s</td>
<td># clicks: 31.5</td>
<td>7.0s</td>
</tr>
</tbody>
</table>

Figure 8
Duration of lookups with high stakes [# of observations in brackets].

an increase in the number of clicks: with high stakes, subjects open the same boxes, spend less
time on each of them and reopen each box more times.

To further assess the impact of stakes on behaviour, we report in Table 12 probit regressions similar to the ones presented in Table 5. We pooled the observations from the baseline and high stakes treatments and added a dummy variable taking value 1 for observations in the high stakes treatment and 0 otherwise. The results we obtained were comparable to the baseline treatment and the high stakes dummy variable was not found to be significant.
TABLE 12
Probit regression on probability of Nash play (st. errors clustered at subject level)

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coefficient</td>
<td>st. error</td>
</tr>
<tr>
<td>Total duration</td>
<td>1.6×10^{-5}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>Duration in [2A]</td>
<td>$2.3 \times 10^{-4**}$</td>
<td>1.0×10^{-4}</td>
</tr>
<tr>
<td>Duration in [1C]</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Duration in [2B]</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Experience (trial #)</td>
<td>0.016***</td>
<td>0.0041</td>
</tr>
<tr>
<td>Highstakes</td>
<td>0.054</td>
<td>0.17</td>
</tr>
<tr>
<td>Constant</td>
<td>$-0.49***$</td>
<td>0.15</td>
</tr>
<tr>
<td># Observations</td>
<td>1059</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

*significant at 10% level, **at 5% level, ***at 1% level.

Taking these results together suggests that increasing the stakes does not affect significantly the lookup patterns of subjects. They do not spend more time analysing the game and they do not shift attention to other boxes. Stakes do not affect their choices either. There are two possible interpretations. It could be that the threshold multiplier that triggers a different attention and behaviour is way above 5. Or, it could be that the ability of subjects to solve the game is limited, making the increased incentives ineffective. We believe the second interpretation is a more plausible explanation of the data.

6. CONCLUSION

The objective of this article was to improve our understanding of human strategic thinking. To do this, we used a Mousetracking system to record information search in two-person games with private information about payoff-relevant states. We found significant heterogeneity among agents in their choice and lookup behaviour. The results suggest that some subjects are limited in their attention information, while others are limited in their ability to process information. Game complexity also plays a key, intuitive role.

Two classes of theories can explain non-equilibrium choices. One theory emphasizes imperfect choice: subjects analyse the game fully but make inferential mistakes and/or believe others make mistakes (as in QRE, CE, and ABEE). Another theory emphasizes imperfect attention: heuristics or limits on cognition cause some subjects to ignore relevant information (as in level-k and cognitive hierarchy).

There is some support for the imperfect attention approach in our analysis. Subjects are endogenously clustered in four groups according to their choice and lookup patterns. Clusters 1 and 4 seem to correspond closely to level 3 and level 1 strategic thinkers, and cluster 3 is a reasonable candidate for level 2. However, cluster 2 subjects are often looking at all the information required to do iterated thinking, but they are not drawing the Nash conclusion, as in the imperfect choice approach. This combination of lookups and choice is

28. This result contrasts with Carrillo and Palfrey (2009) who found heterogeneity in behaviour but no clustering of subjects around a few strategies in their “compromise game”. A combination of cursedness and smooth imperfections (cursed-QRE) fitted their data best. Although a comparison is difficult because the compromise game is not conducive to mousetracking, the differences in results pose a challenge for future experimental and theoretical research in private information games.
what one might expect to see if, for example, a subject were making an imperfect QRE choice. Since QRE has never been specified as a theory of joint information search and choice, we cannot conclude that this cluster represents those looking patterns, but such an approach is promising.

However, it is also true that subjects almost always optimize in the simplest F games. It is probably difficult for the QRE model to explain the failure to optimize in the D1 games and the near-perfect optimization in the F games with a single common parameter for response sensitivity. The best model would require a high parameter to fit the easy choice (F games), and a substantially lower parameter to fit the many non-Nash choices in more complex situations. An interesting possible generalization is that cognitive difficulty increases implicit payoff imprecision (à la Van Damme and Weibull, 2002). Adding such a feature to QRE seems to be necessary to explain behaviour in these games and could be a major advance for QRE and related theories of imperfect choice.

Multiple-type variants of cursed equilibrium could fit the combination of lookups and choices better than QRE. One interpretation of CE which is consistent with cluster-level choice data is that there are different types of players, with cursed parameters $\chi = 0$ (Nash players as in cluster 1) and $\chi = 1$ (fully naïve players as in cluster 4). This CE specification leaves out clusters 2 and 3, which are half the subject pool. Interestingly, cluster 2 might fit a generalized version of CE in which $\chi = 0$ types think there are $\chi > 0$ types (Eyster and Rabin, 2005, Appendix A). In that case, players could look at all payoffs (since some perceived types have $\chi = 0$ which requires full analysis) but then decide to play non-Nash if the perceived χ is high enough.

As with QRE, one can imagine modifications of cursed equilibrium in which degrees of cursedness are manifested by intermediate looking and choice patterns. While such a possibility is not part of the standard specification, it is a challenging direction for future research.

More generally, economists often talk casually about “contemplation costs” (Ergin and Sarver, 2010), “control costs” (van Damme and Weibull, 2002), “thinking aversion” (Ortoleva, 2013) and cognitive difficulty. These costs are usually inferred from higher-order choices. The combination of choice and Mousetracking makes an empirically grounded approach to these topics. These implicit costs should, in principle, be linked to the “spending” of actual cognitive resources such as attention, information acquisition, time spent looking at information, transitions between pieces of information consistent with comparison and other mathematical operations, and so forth. Our view is that this exciting area of research cannot move forward merely by pure speculation about the nature of these processes without some direct measurement of attention. Mousetracking is one of the simplest such techniques.

Acknowledgments. Support of LUSK Center (IB), the Office of the Provost at USC and the Microsoft Corporation (JDC), HFSP, NSF and Moore Foundation grants (CFC) and Moore Foundation (SWW) is gratefully acknowledged. Yi Zhu provided excellent research assistance. Mousetracking was developed by Chris Crabbe and Walter Yuan as an extension to their Multistage program. We are very grateful for their remarkable combination of enthusiasm and speed. Helpful comments were received from audiences at USC Law, Moore Foundation Retreat (March 09), ESA Washington 2009, Stanford SITE 2009, Southampton and Edinburgh.

Supplementary Data

Supplementary data are available at Review of Economic Studies online.

29. By contrast, in this generalized version, $\chi = 1$ types cannot think there are $\chi < 1$ types, otherwise they would also have to look at the other players’ payoffs.
BROCAS ET AL. STRATEGIC THINKING IN PRIVATE INFORMATION GAMES 969

REFERENCES