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Last time, we sketched the process of converting model
environments into non-linear �rst-order systems of
expectational di¤erence equations. Generically, a given
system can be expressed as

Γ (Etzt+1, zt , υt+1) = 0, (1)

where it is understood that zt is an n� 1 vector of stationary
variables, and υt is an m� 1 vector of structural shocks.
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Rewriting forecasted variables as the composition of ex post
realizations and forecast errors, we introduce expectations
errors into the system, which becomes

Γ
�
zt+1, zt , υt+1, ηt+1

�
= 0, (2)

where ηt is an r � 1 vector of expectations errors. Note that
ηt = f (υt ) ; i.e., expectations errors arise from the
realization of shocks.
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Overview of the Approximation/Solution Process

Step 1: Calculate the steady state value of zt , denoted z (if
it exists). The steady state solves

Γ (z , z , 0) = 0.
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Overview, cont.

Step 2 (Approximation): Convert
Γ
�
zt+1, zt , υt+1, ηt+1

�
= 0 into a linear system of the form

Axt+1 = Bxt + Cυt+1 +Dηt+1, (3)

where xt represents a deviation of zt from z . Using linear
approximation,

xit = zit � zi ;
using log-linear approximation,

xit = ln
zit
zi
.
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Overview, cont.

Step 3 (Solution): Obtain a solution of the linear system
of the form

xt+1 = Fxt + Gυt+1. (4)
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Notes
I Introduction of the observation errors ut is postponed
until the solution process is completed.

I Higher-order systems can be accommodated by
converting to �rst-order form. For example, the
pth-order equation

ωt+1 = ρ1ωt + ρ2ωt�1 + ...+ ρpωt�p+1

may be written in �rst-order form as26664
ωt+1

ωt
...

ωt�p+2

37775�
26664

ρ1 ρ2 � � � � � � ρp
1 0 � � � � � � 0
...

... � � � � � � ...
0 0 � � � 1 0

37775
26664

ωt

ωt�1
...

ωt�p+1

37775 = 0,
or more compactly, as

xt+1 �Πxt = 0, xt+1 = [ωt+1,ωt , ...,ωt�p+2]
0.
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Approximation
Textbook reference: Ch. 2.1, pp. 11-16.

We begin the approximation step by focusing on the
deterministic behavior embodied in (1). Speci�cally, we set
υt = 0 8t, and focus on the system expressed as

Ψ (zt+1, zt ) = 0, (5)

where note that Et has been dropped, in anticipation of the
exploitation of Leibniz�Rule. Doing so will yield the
matricies A and B. As we shall see, the matricies C and D
are typically constructed trivially by hand.

We will achieve approximation using Taylor Series
expansions.
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Linearization in Levels

The Taylor Series expansion of (5) about z is given by

0 � Ψ (z) +
∂Ψ
∂zt
(z)� (zt � z) +

∂Ψ
∂zt+1

(z)� (zt+1 � z).

If zt is univariate, ∂Ψ
∂zt
is a single value; in general, ∂Ψ

∂zt
is the

n� n Jacobian matrix of Ψ (zt+1, zt ) with respect to zt ,
evaluated at z . That is, the (i , j)th element of ∂Ψ

∂zt
(z) is the

derivative of the i th equation in (5) with respect to the j th

element of zt .

From (3), note that A = ∂Ψ
∂zt+1

(z) and B = � ∂Ψ
∂zt
(z).
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Linearization in Logs
Here we begin by expressing Ψ (zt+1, zt ) = 0 in terms of
logged values of z .

For illustrative purposes, suppose the system is univariate
and given by

zt+1 = f (zt ).

Taking logs and noting zt = e ln zt , the system becomes

ln zt+1 = ln
h
f (e ln zt )

i
.

Then approximating,

ln zt+1 � ln [f (z)] +
f 0(z)z
f (z)

(ln(zt )� ln(z)) ,

or since ln [f (z)] = ln z ,

ln
�zt+1
z

�
� f 0(z)z

f (z)

�
ln(
zt
z
)
�
.
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Log-Lin., cont.

More generally, begin by reexpressing Ψ (zt+1, zt ) = 0 as

Ψ1(zt+1, zt ) = Ψ2(zt+1, zt ), (6)

and again using the identity zt = e ln zt , taking logs of (6)
and rearranging yields

lnΨ1(e ln zt+1 , e ln zt )� lnΨ2(e ln zt+1 , e ln zt ) = 0. (7)

The �rst-order Taylor Series approximation of this converted
system yields the log-linear approximation we seek.
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Log-Lin., cont.

The approximation for the �rst term:

lnΨ1(zt+1, zt ) � ln [Ψ1(z)] +
∂ ln [Ψ1]

∂ ln(zt )
(z)�

h
ln(
zt
z
)
i

+
∂ ln [Ψ1]

∂ ln(zt+1)
(z)�

h
ln(
zt+1
z
)
i
,

where ∂ ln[Ψ1 ]
∂ ln(zt )

(z) and ∂ ln[Ψ1 ]
∂ ln(zt+1)

(z) are n� n Jacobian
matrices. Likewise for lnΨ2(zt+1, zt ).
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Log-Lin., cont.

Given these approximations,

A =

�
∂ ln [Ψ1]

∂ ln(zt+1)
(z)� ∂ log [Ψ2]

∂ log(zt+1)
(z)
�
,

xt = ln(
zt+1
z
).
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Example

Consider a three-equation subsystem of the RBC model:

yt = ct + it
yt = ztkα

t n
1�α
t

ln zt+1 = (1� ρ) ln z0 + ρ ln zt + εt .

Converting into the form of (7),

ln yt � ln [exp(ln ct ) + exp(ln it )] = 0

ln yt � ln zt � α ln kt � (1� α) ln nt = 0

ln zt+1 � (1� ρ) ln z0 � ρ ln zt = 0.
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Example, cont.

De�ning

xt =
�
ln
yt
y
ln
ct
c
ln
it
i
ln
nt
n
ln
kt
k
ln
zt
z

�0
,

the corresponding rows of A, B are

A =

24 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

35 ,
B =

264 1 �c
y

�i
y 0 0 0

1 0 0 � (1� α) �α �1
0 0 0 0 0 ρ

375 .
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Gradient Procedures

As an alternative to constructing A and B by hand, as in the
above example, consider the use of a numerical gradient
procedure. In GAUSS, the relevant command reference is
gradp. This command computes the gradient vector (for a
single-value function) or Jacobian (for a vector-value
function) de�ned in a procedure.

The following example code demonstrates how to construct
A and B in this alternative manner.
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Grad. Procs, cont.

I Prede�ned variables: number of variables nvars, vector
of parameters p, logged steady state values xbar, and
indicator variable tme. In the proc, y , c , etc. are
understood to represent logged values of y , c , etc.

I Both time-(t + 1) and time-t variables are set to logged
ss values. When tme == 0, derivatives are taken with
respect to t + 1 variables; when tme == 1, derivatives
are taken with respect to t variables.

I In the code, TFP z is referenced as a, and z references
the vector-value function.
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Grad. Procs, cont.
proc loglin(x);

local y, ylag, c, clag, i, ilag, n, nlag, k, klag, a, alag, alp, rh, z;

alp = p[1]; rh = p[5];

if tme ==0; //Build A

y = x[1]; c = x[2]; i = x[3]; n = x[4]; k = x[5]; a = x[6];

ylag = xbar[1]; clag = xbar[2]; ilag = xbar[3]; nlag = xbar[4];

klag = xbar[5]; alag = xbar[6];

else; //Build B

y = xbar[1]; c = xbar[2]; i = xbar[3]; n = xbar[4];

k = xbar[4]; a = xbar[5];

ylag = x[1]; clag = x[2]; ilag = x[3]; nlag = x[4]; klag = x[5]; alag = x[6];

endif;

z = zeros(nvars,1);

z[1] = y - ln( exp(c) + exp(i) );

z[2] = y - a - alp*k - (1-alp)*n;

z[3] = a - rh*alag;

retp(z);

endp;
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Grad. Procs, cont.

To call the proc:
tme = 0;
amat = gradp(&loglin,xbar);
tme = 1;
bmat = gradp(&loglin,xbar);
bmat = -1*bmat;

Exercise: Extend loglin(x) for the fully speci�ed RBC
model.
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Solution
Textbook reference: Ch. 2.2, pp. 17-30.

There are many alternative approaches to obtaining linear
approximations to systems of non-linear expectational
di¤erence equations. Here we will focus on the method
developed by Sims (2001, Computational Economics).

Assuming the existence of saddle-path equilibria, solution
methods in general work by �decoupling�the system into
stable and unstable components. Restrictions are then
imposed on the unstable components so that their in�uence
on the dynamics of the system is eliminated. This amounts
to the imposition of saddle-path restrictions.
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Solution, cont.

To gain intuition behind how decoupling works, it is useful to
work with a deterministic version of the linearized model:

Axt+1 = Bxt .

(Details on the fully speci�ed model are given in Section 2.2;
refer to the posted Errata for two critical corrections.)
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Solution, cont.

Decoupling begins with the execution of the QZ
factorization of (A, B) (GAUSS code has been developed
for this purpose by Paul Soderlind). This involves the
calulation of matricies (Q, Z ) such that

A = Q 0ΛZ 0, B = Q 0ΩZ 0

QQ 0 = ZZ 0 = I ,

with (Λ, Ω) upper triangular. The matricies (Λ, Ω)
contain the generalized eigenvalues of (A, B) along their
horizontal axes. They are organized such that the
eigenvalues are increasing in moving from left to right.
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Solution, cont.

Given the existence of a unique saddle-path equilibrium, the
number of explosive eigenvalues contained in (Λ, Ω) will
equal the number of control variables included in the system.
Let nc denote the number of controls, and ns the number of
state variables, so that ns + nc = n.

Since (Λ, Ω) are upper-triangular, they can be partitioned
into non-explosive and explosive blocks as

Λ =

�
Λ11 Λ12

0 Λ22

�
Ω =

�
Ω11 Ω12

0 Ω22

�
,

where Λ11 is ns � ns , Λ12 is ns � nc , 0 is nc � ns , and Λ22

is nc � nc . Likewise for Ω.
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Solution, cont.

De�ne
zt = Z 0xt ,

so that the elements of zt are linear combinations of the
elements of xt . Then

Axt+1 = Q 0ΛZ 0xt+1 = Q 0Λzt+1,
Bxt = Q 0ΩZ 0xt = Q 0Ωzt ,

Q 0Λzt+1 = Q 0Ωzt .

Since QQ 0 = I , premultiplying by Q yields

Λzt+1 = Ωzt .
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Solution, cont.

The partitioned system is�
Λ11 Λ12

0 Λ22

� �
z1t+1
z2t+1

�
=

�
Ω11 Ω12

0 Ω22

� �
z1t
z2t

�
,

with z1t ns � 1 and z2t nc � 1.

Saddle-path stability therefore requires

z2t = 0 8t,

which amounts to the satisfaction of nc equations through
the choice of nc controls.
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Solution, cont.
Given satisfaction of the saddle-path conditions, the system
evolves as

Λ11z1t+1 = Ω11z1t .

Inverting Λ11, we have

z1t+1 = Λ�1
11 Ω11z1t .

De�ning Z .1 as the n� ns matrix containing the �rst
through ns th columns of Z , the system may be written as

Z .01xt+1 = Λ�1
11 Ω11Z .01xt .

Premultiplying by Z .1, and recalling that Z .1Z .01 = I , we
have

xt+1 = Z .1Λ�1
11 Ω11Z .01xt

= Fxt .
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Solution, cont.

Note #1: For the generalized case in which variables have
non-zero steady states, so that

Axt+1 = Bxt + E + Cυt+1 +Dηt ,

the saddle-path restriction becomes

z2t � z2 = �
∞

∑
i=0
M iΩ�1

22 Q2E2,

M = Ω�1
22 Λ22,

as in (2.43) in the text. When E = 0, z2t = 0, as above.
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Solution, cont.

Note #2: When stochastic uncertainty is introduced in the
model, beyond the imposition of the saddle-path restriction

z2t � z2 = �
∞

∑
i=0
M iΩ�1

22 Q2E2,

we must impose a restriction between the stochastic
innovations fυtg and the expectational errors fηtg . This
amounts to the calculation of Φ in the expression

Q1D = ΦQ2D,

as in (2.45) in the text.
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Solution, cont.

Exercise #1: Using the extended version of loglin(x)
completed in the previous exercise, generate the matricies
(A, B, C , D) for the fully speci�ed RBC model, and
then implement Sims�solution method to obtain the
approximate solution

xt+1 = Fxt + Gυt

= Fxt + et .

Exercise #2: Using the approximated solution, construct
impulse response functions tracing the reaction over time of
each variable in response to an innovation to TFP. Examine
the sensitivity of these functions to alternative
parameterizations of the model. [Reference: Chapter 4,
Sections 1 and 2, pp. 55-79.]
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Solution, cont.

Exercise #3: Consider the following specialization of the
One Tree Model:

pt = βEt (pt+1 + dt+1)

dt+1 = ρdt + εt+1.

De�ning xt = [pt dt ]
0 , map the model into the form

Axt+1 = Bxt + E + Cυt+1 +Dηt .
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Solution, cont.

Then implementing Sims�solution method, show that the
saddle-path stability requirement z2t = 0 amounts to the
restriction

pt = θdt ,

θ =
ρβ

1� ρβ
,

and that

Φ = � θ

ρ
,

as we have derived analytically.
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