Log-Lin. Approx.
and Sin.

DND

Log-Linear Approximation and Model
Solution

David N. DeJong
University of Pittsburgh

Spring 2008, Revised Spring 2010

Last time, we sketched the process of converting model
environments into non-linear first-order systems of
expectational difference equations. Generically, a given
system can be expressed as

r (Etzt+1vztvvt+1) =0, (1)

where it is understood that z; is an n X 1 vector of stationary
variables, and v; is an m x 1 vector of structural shocks.

Log-Lin. Approx.
and Sin.

DND

Overview of the
Process

Rewriting forecasted variables as the composition of ex post
realizations and forecast errors, we introduce expectations
errors into the system, which becomes

r (Zt+1, Zt, Ut-‘rlv 17t-+1) - 01 (2)

where 77, is an r X 1 vector of expectations errors. Note that
7, = f (v:); i.e., expectations errors arise from the
realization of shocks.

Log-Lin. Approx.
and Sin.

DND

Overview of the
Process

Log-Lin. Approx.

Overview of the Approximation/Solution Process and Sin

DND

Overview of the
Process

Step 1: Calculate the steady state value of z;, denoted Z (if
it exists). The steady state solves

I'(z,z,0)=0.

Log-Lin. Approx.

Overview, cont. and Sin
DND

Overview of the
Process

Step 2 (Approximation): Convert
r (zt+1, Zt, Urt1, 17t+1) = 0 into a linear system of the form

AXtJrl = BXt + Cvt+l + D”t+1r (3)

where x; represents a deviation of z; from Z. Using linear
approximation,
Xit = Zjt — Zj;
using log-linear approximation,
Zit

Xijt — In —.
Zj

Overview, cont.

Step 3 (Solution): Obtain a solution of the linear system

of the form

Xer1 = Fx¢ + GUgya.

(4)

Log-Lin. Approx.
and Sin.

DND

Overview of the
Process

NOteS Log-Lin. Approx.

and Sin.
» Introduction of the observation errors u; is postponed DND
until the solution process is completed. _
i Overview of the
» Higher-order systems can be accommodated by ATOEEES

converting to first-order form. For example, the
pth-order equation

Wiyl = let +p2wt71 + ... +ppwt,p+1

may be written in first-order form as

Wit pl pz e pp Wi
Wt 1 0 e Ce 0 Wi_1
_ =0,
We—p+2 o o0 -~ 1 0 Wt—p+1

or more compactly, as

!/
Xt+1 — HXt =0, Xt+1 — [(UH_L We, ...,(Ut_p+2] .

- - Log-Lin. Approx.
Approximation el
Textbook reference: Ch. 2.1, pp. 11-16. DND

We begin the approximation step by focusing on the ApprcXimation

deterministic behavior embodied in (1). Specifically, we set
vy = 0 Vt, and focus on the system expressed as

Y (z¢41,2:) =0, (5)

where note that E; has been dropped, in anticipation of the
exploitation of Leibniz' Rule. Doing so will yield the
matricies A and B. As we shall see, the matricies C and D
are typically constructed trivially by hand.

We will achieve approximation using Taylor Series
expansions.

Log-Lin. Approx.

Linearization in Levels and S
DND

The Taylor Series expansion of (5) about Z is given by

Linearization in Levels

Y@ x (2-2)+

0~Y(z)+—
() azt Zt 41

(2) X (zt41 — 2).

If z; is univariate, 5, isa single value; in general, o 1S the

n x n Jacobian matrix of ¥ (z¢41, z;) with respect to z,
evaluated at z. That is, the (i,)" element of %(?) is the
derivative of the it equation in (5) with respect to the j
element of z.

From (3), note that A = Bgil (%) and B = _%(2).

Log-Lin. Approx.

Linearization in Logs S

Here we begin by expressing ¥ (z¢41,z:) = 0 in terms of DND
logged values of z.

For illustrative purposes, suppose the system is univariate

and glven by Linearization in Logs

Ziy1 = f(Zt>.

Taking logs and noting z; = e'"?, the system becomes
Inze41 =1In [f(e'”zf)] :

Then approximating,

Inzy1 =~ In[f(Z)] +

or since In [f(Z)] = InZ,

Log-Lin., cont. S

DND

More generally, begin by reexpressing ¥ (z;41,2:) = 0 as

Linearization in Logs
Y1(ze41.2¢e) = Yo(zeq1, 2¢), (6)

and again using the identity z; = e" %, taking logs of (6)
and rearranging yields

|n1I/1(e|nzt+1’ elnzt) _ |n1Y2(e|nzt+1' e|r1 zt) =0. (7)

The first-order Taylor Series approximation of this converted
system vyields the log-linear approximation we seek.

- Log-Lin. Approx.
Log-Lin., cont. Eand i,
DND
The approximation for the first term: WUinearization|inl Logs
dlin [‘Fl]

INYi(zei12) & n¥1(2)] + Go0@) x [In(3)]

a|n[‘{f1] _ Zi41
+a|n(zt+1) z) [In(f)}'
dIn[¥] (7) d dIn[¥]

dln(z) dln(zet1)
matrices. Likewise for InW5(zp41, z¢).

where () are n x n Jacobian

Log-Lin., cont.

Given these approximations,

A dln [1{;1]

X = |n(zt;).

dIn(ze41) z

Log-Lin. Approx.
and Sin.

DND

Linearization in Logs

_ dlog[Y¥>]
dlog(z+1)

Log-Lin. Approx.

Example and Sin.
DND

Consider a three-equation subsystem of the RBC model:

}/t - Ct + it Example
o, 1—a
Yo = ziking
Inzepr = (1—p)Inzg+plnze + €.

Converting into the form of (7),

Iny; — In[exp(Inc;) + exp(Iniy)]
Iny; —Inzz —alnks— (1 —a)lnn, =

Inzey1 —(1—p)Inzg—plnz, = 0.

Log-Lin. Approx.

Example, cont. and Sin.
DND

Defining

. /
Yt Ct It Nt k¢ Zt
Inj |nj |nf_ Inj In = |nj

Xt —
y c I n k z

1 Example

the corresponding rows of A, B are

000 O0O0O
A = 0 00O0O0O0],
(000001
1_7C_7’ 0 0 O
B =110 0 —(1-a) —-a -1
0 0 0 0 0

Log-Lin. Approx.

Gradient Procedures and Sl

DND

As an alternative to constructing A and B by hand, as in the

above example, consider the use of a numerical gradient Gradient Procedures
procedure. In GAUSS, the relevant command reference is

gradp. This command computes the gradient vector (for a

single-value function) or Jacobian (for a vector-value

function) defined in a procedure.

The following example code demonstrates how to construct
A and B in this alternative manner.

Log-Lin. Approx.

Grad. Procs, cont. and Sin

DND

» Predefined variables: number of variables nvars, vector
of parameters p, logged steady state values xbar, and
indicator variable tme. In the proc, y, c, etc. are
understood to represent logged values of y, ¢, etc.

Gradient Procedures

» Both time-(t 4 1) and time-t variables are set to logged
ss values. When tme == 0, derivatives are taken with
respect to t + 1 variables; when tme == 1, derivatives
are taken with respect to t variables.

» In the code, TFP z is referenced as a, and z references
the vector-value function.

Log-Lin. Approx.

Grad. Procs, cont. and Sin

proc loglin(x); DD

local y, ylag, c, clag, i, ilag, n, nlag, k, klag, a, alag, alp, rh, z;
alp = p[1]; rh = p[5];
if tme ==0; //Build A
y = x[1]; ¢ = x[2]; i = x[3]; n = x[4]; k = x[5]; a = x[6];
Gradient Procedures
ylag = xbar[1]; clag = xbar[2]; ilag = xbar[3]; nlag = xbar[4];
klag = xbar[5]; alag = xbar[6];
else; //Build B
y = xbar[1]; ¢ = xbar[2]; i = xbar[3]; n = xbar[4];
k = xbar[4]; a = xbar[5];
ylag = x[1]; clag = x[2]; ilag = x[3]; nlag = x[4]; klag = x[5]; alag = x[6];
endif;
z = zeros(nvars,1);
21] = y - In(exp(c) + exp(i));
z[2] =y - a - alp*k - (1-alp)*n;
z[3] = a - rh*alag;
retp(z);

endp;

Log-Lin. Approx.

Grad. Procs, cont. and Sin

DND

To call the proc:

tme = 0; Gradient Procedures
amat = gradp(&loglin,xbar);

tme = 1;

bmat = gradp(&loglin,xbar);

bmat = -1*bmat;

Exercise: Extend loglin(x) for the fully specified RBC
model.

- Log-Lin. Approx.
Solution ©and Sin.
Textbook reference: Ch. 2.2, pp. 17-30. DND

There are many alternative approaches to obtaining linear
approximations to systems of non-linear expectational

difference equations. Here we will focus on the method Solution
developed by Sims (2001, Computational Economics).

Assuming the existence of saddle-path equilibria, solution
methods in general work by ‘decoupling’ the system into
stable and unstable components. Restrictions are then
imposed on the unstable components so that their influence
on the dynamics of the system is eliminated. This amounts
to the imposition of saddle-path restrictions.

Log-Lin. Approx.

Solution, cont. and Sin
DND

To gain intuition behind how decoupling works, it is useful to
work with a deterministic version of the linearized model:

Solution

AXt+]_ = BXt .

(Details on the fully specified model are given in Section 2.2;
refer to the posted Errata for two critical corrections.)

Log-Lin. Approx.

Solution, cont. and Sin

DND

Decoupling begins with the execution of the QZ

factorization of (A, B) (GAUSS code has been developed

for this purpose by Paul Soderlind). This involves the

calulation of matricies (Q, Z) such that Solution

A = QAZ, B=QQZ
Q" = zZ' =1,

with (A, Q) upper triangular. The matricies (A, Q)
contain the generalized eigenvalues of (A, B) along their
horizontal axes. They are organized such that the
eigenvalues are increasing in moving from left to right.

Solution, cont. S

DND
Given the existence of a unique saddle-path equilibrium, the

number of explosive eigenvalues contained in (A, Q) will
equal the number of control variables included in the system.
Let n. denote the number of controls, and ns the number of
state variables, so that ns + n. = n.
Solution
Since (A, Q) are upper-triangular, they can be partitioned
into non-explosive and explosive blocks as

o VANERRANT
A= [0 A22:|
_ O O
aQ = [0 (7))] '

where Aj1 is ns X ns, A12 is ns X ne, 0is n. X ns, and Ao
is nc X nc. Likewise for Q).

Solution, cont. S
DND
Define
Zy — Z/Xt-,
so that the elements of z; are linear combinations of the
elements of x;. Then Solution
Axey1 = Q/AZ/XH—l = Q’A2t+1y
BXt = Q/QZ/Xt = Q,QZt,

QAziy1 = QQz.
Since QQ’' = I, premultiplying by Q yields

AZt+1 = QZt.

Log-Lin. Approx.

Solution, cont. and Sin

DND

The partitioned system is
[All A1z } {thﬂ } _ [O O } {th }
0 A Zot41 0 QO 2 |’ Soution
with z1+ ns X 1 and z; n. x 1.
Saddle-path stability therefore requires

2ot — 0 Vt,

which amounts to the satisfaction of n. equations through
the choice of n. controls.

Solution, cont.

Given satisfaction of the saddle-path conditions, the system
evolves as
A1zt = Qi z1e.

Inverting A1, we have
—1
21041 = A7 Q11214

Defining Z.1 as the n X ng matrix containing the first
through nsth columns of Z, the system may be written as

/ -1 /
Z.1Xt+1 = All Qllz.lxt.

Premultiplying by Z.1, and recalling that Z.1Z.] = I, we
have
xey1 = ZaAFOnZx
= FXt.

Log-Lin. Approx.
and Sin.

DND

Solution

- Log-Lin. Approx.
Solution, cont. ©ond S
DND
Note #1: For the generalized case in which variables have
non-zero steady states, so that
AXt+1 = BXt + E + Cvt+]_ + Dﬂt’ Solution

the saddle-path restriction becomes
(o]
_ i—1
2t = n=—) MQyQE,
i=0
—1
M = Q55 A,

as in (2.43) in the text. When E =0, zo; = 0, as above.

Log-Lin. Approx.

Solution, cont. and Sin

DND

Note #2: When stochastic uncertainty is introduced in the
model, beyond the imposition of the saddle-path restriction

oo
2ot = 2p = —ZMIQ2_21 Q2E2' Solution
i=0

we must impose a restriction between the stochastic
innovations {v;} and the expectational errors {7, } . This
amounts to the calculation of ® in the expression

D =oQD,

as in (2.45) in the text.

Log-Lin. Approx.

Solution, cont. and Sin

DND

Exercise #1: Using the extended version of loglin(x)

completed in the previous exercise, generate the matricies

(A, B, C, D) for the fully specified RBC model, and

then implement Sims' solution method to obtain the

approximate solution Sl

Xt4+1 — FXt + GUt
= FXt + ér.

Exercise #2: Using the approximated solution, construct
impulse response functions tracing the reaction over time of
each variable in response to an innovation to TFP. Examine
the sensitivity of these functions to alternative
parameterizations of the model. [Reference: Chapter 4,
Sections 1 and 2, pp. 55-79.]

Log-Lin. Approx.

Solution, cont. and Sin

DND

Exercise #3: Consider the following specialization of the
One Tree Model:

Solution
p: = PE:(pe+1+dey1)
div1 = pdi+ &1,

Defining x; = [p: dt]/, map the model into the form

AXt+1 = BXt + E + CUt+]_ + Dﬂt

Solution, cont. S

DND
Then implementing Sims’ solution method, show that the
saddle-path stability requirement z; = 0 amounts to the
restriction
Solution
pr = 0d;,
B
1—pp’
and that
oo
P

as we have derived analytically.

	Overview of the Process
	Approximation
	Linearization in Levels
	Linearization in Logs
	Example
	Gradient Procedures

	Solution

