Perturbation

DND

Perturbation Methods

David N. DeJong
University of Pittsburgh

Spring 2010



Perturbation

Notation

DND

Notation

Recall our generic representation of a DSGE model:
r (Et2t+1, Zt, UH-I) =0,

where z; is an n X 1 vector of stationary variables, typically
in the form of detrended levels, and v; is an m x 1 vector of
structural shocks.
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Notation

In what follows, it shall be convenient to re-express this as

E:f (Ct+1y Cty St+1. St) =0,

where
> G n. X 1 vector of control variables
> S ns X 1 vector of state variables

» nc.+ns=n
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Notation

Further, s; is decomposed as

St
where
> st ns1 X 1 vector of endogenous state variables
(e.g., physical captial)
> st2 : nsy X 1 vector of exogenous state variables
(e.g., TFP)

> Nngy = m, Ns1 = Ns — Ns2.



Perturbation

Notation, cont.

DND

Notation

Finally, s? evolves according to
2 — A 2+ ~
St+1 = NSy T OT€r+1,
where

» o is a scalar (specifically, a perturbation parameter)
E m X m VCV matrix
> g1 i.i.d. with zero mean, VCV matrix /

> Upy1 = €41
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Thus our generic model is fully summarized as

Eif (cty1. ¢t 5t41,5:) = O,

2 2 ~
5t+1 = ASt + 077€t+1.



Representation of the Solution

Here, we seek a solution of the model of the form

¢ = c(s,0),
St41 = S (St, (7') + ONEt4+1,
where
0
. Ns1 X Ng2
(Y
Ns X nNso

Ns2 X Ns2
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Notation

Define the non-stochastic steady state of the model as
(¢,3), such that
f(c,¢,55) =0.

It is also true that

ol
|
)

0l
)
TN N
i
~—

since for 0 = 0,



Introduction to Perturbation Methods

The goal of perturbation methods is to construct Taylor

Series approximations to

Ct

St+1

around

= c(s,0),

= s(st,0) +oner

(s,0) = (3,0).
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Recall that for a generic (k + 1) —times differentiable redbeton 10
1 Perturbation
function Perturbat
y = f(x),

with x a scalar, Taylor's Theorem states that

f() _ f( _ / (X_XO)2 "
x) = x0) + (x —x0) ' (x0) + " (x0)

2
(= %0)" 0
_|_..._|_Tf (x0) + Rit1(x),
where (k+1)
X — X
R () = C @)

for some ¢ between x and xg.
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For n—dimensional x, we have ER
Methods
F) = £+ Lo () ()
’.Zlax,- ! !
10L& 9%f 0 o o
+§§J;axl_axj (X ) (xi —x7) (XJ X; )
1 n n akf-
+Eilz=:1 - ikZ=:1aXi1i e 00X, () G =) - (o =)

+O([lx = xo ).
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However, in this case the functions

¢ = c(s,0),

Str1 = S (St, U) + ONEr+1

we seek to approximate are unknown. Thus we need further
help from the Implicit Function Theorem.

Perturbation
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The Implicit Function Theorem

For k—times differentiable H (x,y) : R" x R™ — R™, with

H (x0.y0) = 0,

and Hy (xo, yo) non-singular, there is a unique function
h:R" — R™ such that

yo = h(x),
and for x near xg,
H(x,h(x)) =0.

Furthermore, h(x) is k—times differentiable, and its
derivatives can be computed by implicit differentiation of the
identity H (x, h, (x)) = 0.
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Consider a problem of the form Perturbation
Methods

f(x,0)=0,

with (x, o) scalars. We seek an approximation to the
solution
x=x(0),

given that x (0) is known. The approximation is in the form
of a Taylor Series expansion:

1
x%?+x’(azo)a+§x”(a:0)(72+...
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Substituting for x using the solution we seek, we have Introduction to
Perturbation
Methods

f(x(0),0) =0.

Then differentiating with respect to o, we have by the
Implicit Function Theorem

fo (x(0),0)x (¢) + fr (x(0),0) =0.

Then since x (0) is known, and the functional form of f () is
given, this yields



The Basics, cont.

Having calculated

the first-order approximation to x = x (0) we seek is given

by

£ (x(0).,0)

% (x(0),0)
Key Observation: Given x (0), x’ (0) obtains linearly from
the first difference of f (x (¢), o) with respect to o.

x~ x(0)—

Perturbation
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To expand the approximation to second-order, we require an Yettonh
expression for x” (0) . Relying again on the Implicit Function
Theorem, we can differentiate

o (x (o), 0)x" (0) +fr (x(0),0) =0
with respect to o, yielding

o (x (), 0) X" (0) + fix (x (), 0) (X' (0))?
1260 (x (0),0) X' (0) + foe (x (7))
= 0.
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Given the expression for x’ (0) calculated for the first-order _
approximation, and once again given that x (0) is known, Pereurbation
solving for x” (0) yields veheds

fix (x (0),0) (X' (0))° + 2fs (x (0) ,0) X' (0) + fro (x(0),0) _

X (0) = - £ (x(0),0)

The second-order approximation we seek is then given by

Key Observation: Given x (0), and x’ (0), x” (0) obtains
linearly from the second difference of f (x (¢), ) with
respect to 0. Higher-order approximations obtain via
straightforward recursion.
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. . . - . Perturbation
Consider the impact of a per-unit tax T on the equilibrium Methode.
quantity and price (@, P) of a generic good. Demand and

supply for the good are given by

QD=<’,13>{X, Qs = (P—1)F, a,p>0.

The impact we seek is in the form of the relationship
between T and equilibrium price P :

P=P(1).
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Establishing the equilibrium price as the solution to Perturbation
Methods

f(P,t) = Qp—Qs
= (;}>{X—(P—T)’8
= 0,

note that for T = 0, P = 1. Substituting for P using the
form of the solution we seek, the problem is expressed as

F(P(T),7) = <PET)>“— (P (1) —1)f = 0.



Example, cont.

Exercise: Applying the Implicit Function Theorem to

(P00 = (55) ~(P@-0° =0

derive the second-order approximation

P(t) ~ P(0)+ P (0) T+ %P” (0) 2.

Perturbation

DND

Introduction to
Perturbation
Methods



Approximating Solutions to DSGE Models

Returning to our generic DSGE model

E:f (ceq1, ¢t 5e41.5) = 0,
2 2,
Sty1 = As; +01Er,

our goal is to construct a kth-order Taylor Series
approximation to the unknown solution

¢ = c(s,0),

St41 = S(St.0) +0neryr.

Perturbation

DND

Using Perturbation
to Approximate
Solutions to DSGE
Models



Notation

Here, | will make explicit the construction of a second-order
approximation, following Schmitt-Grohe and Uribe (2004).
Let _ ‘

[esle lesslas
denote the (7, a) and (i, ab) elements of the n. X ns and
ne X n? matricies

ac (st,0) 0%c (st,0)
dsy dsds’ '

evaluated at (5,0).

Perturbation
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Using Perturbation

AlSO, let to Approximate
Solutions to DSGE
Models

el fs—3l, = "i[ch;@a—fa),
[css]gb[s—é]a[s—E]b = ZZ CSS ab Sa—3a) (Sb—3p) -

a=1lb=

etc.



Approximating DSGEs, cont.

Then the approximation to ¢ (s, o) we seek is of the form

[c(se.0)]" =

i=1,...,n.;ab=1,..

(€] +[els[s = 5], + e @

5 lesliy 5=, [ 3l,

1 i _
+§ [CSU]a [S - s]a v

1 i _
+§ [C(TS]a [S_S]ao—
1 i
+§ [Cmr] 0'2,

., Ns.

Perturbation
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Approximating DSGEs, cont.

Likewise, the approximation to s (s;, o) we seek is of the
form

sena)l = &+ sl s =3, + ) o
45 sl s =5, 15— 5,
3 lsell s =3, 0
4Ll s =31, 0

1 .
+§ [SU’O']J 0-21

j=1..ns;ab=1, .. n;.

Perturbation

DND
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Models



Approximating DSGEs, cont.

Note that if _ _
[CS],’; ' [CSS];b !

etc. are in the form of elasticities, then [s —3]_, etc.
represent logged deviations from steady states. That is, our
approximations can accommodate both linear and log-linear
model representations.

Perturbation

DND
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Models



Approximating DSGEs, cont.
To construct these approximations, we proceed by
substituting for (ct, ¢r41, Se41) in
E:f (Ct+1, Cty St+1. St) =0,
using

¢ = c(s,0),

St41 = S(St,0) 4+ 0nEry.

Eliminating time subscripts, and denoting time-(t + 1)

variables with primes, substitution yields

Perturbation

DND

Using Perturbation
to Approximate
Solutions to DSGE
Models

F(s,0) = Eif(c(s(s,0)+onet,a),c(s,0),s(s,0)+onel,s) =0.
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To construct our linear approximation, we use the Implicit
Function Theorem to obtain

Linear Approximation

Fs(s,0) = 0,
Fr(s,0) = 0,

where the first expression represents a set of n- ns; equalities,
and the second a set of n equalities.
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Denoting
; Te s off 9c? 9sh
i a b
l:fC/]a [CS]b [SS]J o ;Eﬁﬁ@’ Linear Approximation
etc., Fs (5,0) = 0 is given by
_ i i a b i a i b i
[Fs (5.0)]; = [fol, o]y [ss]) + [fel; [es]; + (] [ss]] + [£s];
_ Oy

i=1,...nj,b=1 ..ns;a=1,.. nc.
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Since the derivatives of f () evaluated at (¢,5) are known,

F.(5,0)]=0
[ S( )]J Linear Approximation
is a system of n- ns quadratic equations in the n - ng

unknown elements of ¢ () and s; () .

This takes us halfway towards our linear approximations of
c() and s (). Below we shall discuss an alternative approach
to obtaining ¢; () and ss ().
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To complete the construction of our linear approximations,
we use
Fs(5,0) =0,
which is given by
Linear Approximation
]b

Fo(5.0)) = [l lesl [so]” + [Fel [eo)? + [£e]] (o] + [l [

i=1..,nma=1..,n; b=1, .. ns (Note: expressions
involving ¢ are eliminated by application of the expectations
operator.)

As these equations are linear and homogeneous in

([sg]b : [cg]a) , these must be zero.
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Thus our first-order approximations are given by

Perturbation

DND

Linear Approximation



Linear Approximation, cont.

As an aside, note that an alternative approach to obtaining
(cs () ss ()
involves the transformation of the linear model representation
Xe+1 = Fx¢ + GUgq
(obtained, e.g., using Sims' method) into

¢ = GCs,

St+1 = FSt.

Perturbation

DND

Linear Approximation
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A simple method for doing so is as follows:

» Simulate {vt};l from its known distribution (T need
not be large!).

» Using xg = X and {vt}thl , simulate {Xt}tT:1 using

Linear Approximation
Xep1 = Fx¢ + GUegr.

- T . T T
» Divide {x;},_; into {¢t},_;, {st};_; ., construct y as
the T X n. matrix with t™" row cé, and X as the T X ns
matrix with t" row s/, and obtain

1

C'=(X'X) " Xy.
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Then to construct s;11 =TI's; :

.. T . T T
> Divide {x¢},_; into {s{},_,, {s 2}t | » construct y as
the T x ng; matrix with t? row s}/, and X as the
T X ns matrix with tth row st, and obtain

7 (X ’X)fl X'y, T —
» Then recalling that
st+1 Ast + oNert,
construct
I = [ ! ] , I 0°A
~~

Ns1xng Ns2x ng
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To obtain second-order approximations to
¢ = c(s.0),
str1 = S(5:,0) + o,
. . . Second-Order
we flrSt dlfFerentlate Approximation

[F: (5,0)); =0
with respect to s to identify

s (5,0), Sss (5,0) .



Second-Order Approximation, cont.

Next, we differentiate
Fr(5,0)=0
with respect to o to identify
o (5,0), seo (5,0) .
Finally, we differentiate
Fr(5,0) =0
with respect to s to identify

o (5,0), sso (5,0) .

Perturbation

DND

Second-Order
Approximation



Second-Order Approximation, cont.
Differentiating [Fs (5,0)]; = 0 with respect to s:

[Fos (5.0)] =

([Forerly, [es]] (sl + [ferclh, eI

+[fCS’]a5[ ] [cs];k) [C]Z[SSH')

+ [fe ] [css)s [55]5 [SS]J!'(

+[fo)] el 5]

(el [es)] [s55 + [Feclly, [Gs]] + [Fosr ]y [56]
+ [fe

[ ]; [CSS]fk

C/

) i
it [feslon

)

o [Foclby [es]d + [frsrls 5]y + [

 [focrljy [es]3 [l + [fscljy [esli + [fooljs [ssli + (sl

Perturbation

DND

Second-Order
Approximation

) 6]

sJhi) [ss]7

= 0; i=1,..,n, j. k,b,6=1,.., ns a,vy=1,..nc
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Since we know the derivatives of f as well as the first

derivatives of ¢ and s evaluated at (c/,c,s',s) = (€,C,5,5),  secontorter
the above expression represents a system of n X ng X ng et
linear equations in the n X ng X ns unknowns given by the

elements of ¢ and sss.



Second-Order Approximation, cont.
Differentiating Fy (5,0) = 0 with respect to ¢:
[For (3,0)]' =

¢.¢

o) [l s

el (o] 8 T3 Il 1
M ATAT

1, el 2 bl 1

l:1,...,n a,vy=1,..nc;

Perturbation

DND

Second-Order
Approximation
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This is a system of n linear equations in the n unknowns st O
given by the elements of ¢;» and sy
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Differentiating F, (5,0) = 0 with respect to s, taking into
account that all terms containing either ¢, or s, are zero at
(5,0), we have [Fys (5,0)]; =
[Fos (5.0)]; = [f]] [ 5 (o], + [Fo] [cos]? [s6]]
i b Anoximation

L a=1,..,n. b,v,j=1.., n;s.

This is a system of n X ng equations in the n X ns unknowns
given by the elements of ¢,s and sys.
But the system is homogeneous in the unknowns, thus

CU'SZO 5(75:0
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Consider a version of the one-tree model featuring only

dividends as a stochastic process. Recalling that in
equilibrium

Ct = dt Vt,
the model is given by

Example: One
Tree Model

u (dt) p: = PBE: (Ul (dt+1) (Pt+1 + dt+1))
div1 = (L—p)d+pde +0ert1 eer1 ~ N (0,02).
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Note in this case that the state is comprised exclusively as
the exogenous dividend process
S = dt - H,
implying
=1 =0 Tree Model

Moreover, this implies that the state-transition equation
need not be constructed, but is given directly as

Str1 = S (St, U) + OHEr+1
= (1—p)d+ pdi + 00cer11.



One Tree Model, cont.

Thus in this case we merely require the approximation of the
policy function
e =c(s,0),

where the controls are comprised exclusively as
Ct = Pt

with steady state

Perturbation

DND

Example: One
Tree Model
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The approximation we seek is of the form
[c(st.o)] = p+lc](d—d)+[c]o
1 —\ 2
‘|‘§ [Css] (d — d)
1 Example: One
_|_, [C(TO’] 0'2’ Tree l\pAodel

2

since it is known that

[cse] = [cos] = 0.



Perturbation

One Tree Model, cont.

DND
In terms of the representation
F(s,0) = Eif(c(s(s,0)+onet, o), c(s,0),s(s,0)+0onel,s) =0,
under the redefinition
C(S,U’)Ep(d,o'), S(St,U):(l—p)a—i—pdt, _If_:;ern’a\z;j;)ne

the model is given by F (d,0) =

J (d) p(d.0) — Bu' (1 - p)d+ pd + 00ie') -

Ee (p((l—p)d—de—F(TUgs,(T)—F( —p)d+pd + ooee)

= 0.
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One Tree Model, cont.
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Hereafter, to ease notation, we shall drop the appearance of
the constant term (1 — p) d from all expressions in F (d, o)
involving d;11 expressed as a function of d;.
Thus the model is expressed as
F(d o) = Tree Model

'(d)p(d,0)

u
Ee —Bu' (od +o0ee’) - (p(pd + 00ee’, 0) + pd + 00.e")

= 0.
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Differentiating F (d, o) with respect to d, we obtain
Fd (d, 0’) =

u" (d)p(d, o)+ u (d) pg(d,o)
—pu” (pd + 00:€') - - Tree Model
(p(pd + 00:€',0) + pd + ooee’)
—pu' (pd +00ee’) - (pa (pd + 00ee’, 0) - p + p)

E:
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First-Order Approx., cont.

Applying the expectations operator, and evaluating at o
(3, p,o = 0) , we obtain
o' (@) p (d,0) + ' (d) py (d,0) — pu’ (d) p- (p+ )
—pu' (d) (ps (d.0) 0 +p)
= 0.
Note in the linear utility case, Example: One
Tree Model

J(d) =1, o' (d) =0,
and thus

pa (d.0) =B (ps (d.0) p+p) =0,

or




Fil’St—Order Approx_1 cont. Perturbation
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For
J(d)=d",

solving for py (H, O) yields

—u"(d) p(d.0) +pu" (d)p- (p+d) +ppu' (d)

Pa(,0) = v (d) (1— pp)

v (d) (1-pB)
_ 1/r—pBo-(1/r+1)+pBy!
- 7( (1 pP) )
_ 7<1/f(1—pﬁ)+pf5(v‘1—1)>
(1-pB) '

_ (—u”(d)d) (1/r—ﬁp-(1/r+1 — opu (d)uls{d) d
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Next, differentiating F (d, o) with respect to o, we obtain
Fo(d, o) =
U (d)ps(d, o) — Bu" (pd + 00ee’) - oee’
Et (p (pd + 0-0-58/’ U) + IOd + 0-0—88/) Exaniple: One

_IBU/ (pd + 0—0—88/) . Tree|Model
(pg (pd + 00, 0) - 0c€ + pr (pd + 00, 0) + 0,€")



Perturbation

First-Order Approx., cont.

DND

Applying the expectations operator, and evaluating at
(8, P, = O) , we obtain
«' (d) ps (d,0) — pu' (d) ps (d.0) = 0.

Example: One
Tree Model

Thus B
ps (d,0) = 0.
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Thus our linear approximation of the policy function is given
by
_ 1/r 1 - + ’)/_1 — 1 _ Example: One
[C(St,U)] :p+’)/ ( ( pg‘)_{fﬁﬁ)( )> (d_d) Tree Model



Second-Order Approximation

Pursuing the second-order approximation, differentiating
Fy (d, o) with respect to d, we obtain
Fdd (d, 0’) =

E:

W (d) p (d,0) + 24" (d) py (d. )
+u' (d) paa (d, 0)

—pu" (pd + ooee’) - p*-
(p(pd +00:€,0) + pd + ooee’)
—2Bu" (pd + ooe’) - p-

(pa (pd + 00, @) +p)

| —BU (pd + 00ee’) - (pag (pd + o0ee’, ) - ?)

Perturbation

DND

Example: One
Tree Model



Second-Order Approx., cont.

Applying the expectations operator and evaluating at
(d,ﬁ, o= O) , we obtain

u" (d) p (d,0) +2u" (d) py4 (d,0)
+u' (d) pag (d,0) = Bu” (d) - p* - (p (d,0) + d)
—2Bu" (d) -p- (pa (d.0) +1)
—pu’ (d) pag (d.0) - p?
= 0.

Perturbation

DND

Example: One
Tree Model
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Solving for pgq (d,0) , we obtain

— —a—2b+c+2d
o @0 = @ o)
where S
a = o (d)p(d.0)
b = ' (d)ps(d.0)
¢ = P (@) (p(d.0)+7)
d = pBu’ (d) (pa (d.0) +1).
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Next, differentiating F, (d, o) with respect to o, we obtain
For (d, o) =

[ v (d) pee (d, o)
—Bu" (pd + coee') - o2€?-
(p(pd + 00€',0) 4+ pd + ooee’)

' (pd o) o
E; (pd (0d + 00e€, 0) - e + py (0d + 00e€, ) + gy

—Bu" (pd + ooee’) - o'

(pd (pd +o0ee’,0) - 0:€' + pr (pd + 00, ) + 0e€’)
—Bu’ (od + ooee') -

| (pdd (pd + 00ee’, ) - 026 + ps (pd + 00¢€', 0) + poo (d, 7)) |

= 0.

Note: | have exploited the fact that pys () = prg () = 0.
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Applying the expectations operator, evaluating at
(d,p.o =0), and recalling p, (d,0) = 0, we obtain
UI (@ pag (H, O) — Example: One
—ﬁu”’ (d) . 0'; (ﬁ —|— d) Tree l\pﬂoael

pu (@)
(pus (9.0) - 02 + prc (d,0))
= 0.
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Given the expression for pyq (d,0) , we solve for py (d,0) as

u/// d o
peo (@.0) = 2P ( - ((d)) + pad (4, o)) . beayelis
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Second-Order Approx., cont.
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Thus our quadratic approximation of the policy function is
given by

(o)) = poy (ML g
1

+5pad (d.0) (d—d)?

1 _
+§pm7 (d, O) o2

Example: One
Tree Model
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To adapt the GAUSS version of the code developed by
Schmitt-Grohe/Uribe to a particular DSGE model, the user
must provide:

» Preamble identifying the dimensionality of the model,
establishing the parameter vector, and mapping the
parameter vector into 7

» An src file with procedures that return steady state Code
values as a function of the parameters; a seperate
procedure for each model equation that evaluates the
equation at the steady state; and the matricies (C, D)
needed as input for Sims’ solution procedure.



Preamble for the RBC Model Perturbation
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neulers = 1; // # of euler equations included in the model
nexstates = 1; // # of structural shocks
nendstates = 1; // # of endogenous state variables
ncontrols = 5; // # of control variables
nstates = nendstates+nexstates; // total # of state variables
nvars = ncontrols-+nstates; // # of variables included in the model
xbar = 0; // will contain ss values
Code
xstar = 0; // ss values extended
approx = 2; // Order of approximation desired
procvec=0; // Define a system of equations as a vector of procedures
// establish parameters: alpha, beta, delta, rho, sigeps, phi, psi

let p[7,1] = 0.24 0.99 0.025 0.78, 0.0067, 1.5, 0.35;



Perturbation

Preamble, cont.

DND

eta = zeros(nstates,nexstates) ;
sigma = 1; // perturbation parameter sar Approximation
nd-Order

oximation

vcvmat = zeros(nexstates,nexstates); // VCV matrix of exogenous innovations
vevmat(1,1] = p[5]°2;

sqrtvevmat = chol(vcvmat) Code

eta[l:nexstates,.] = sqrtvcvmat;



Example Bits of the SRC file

proc(1)=Sys3(x);
local fx, a, alag, k, klag, vy, ylag, c, clag, i, ilag, n, nlag, |, llag,

alp, bet, del, rh, sige, ph, ps, cfac, Ifac;

alag = x[8]; klag = x[9]; ylag = x[10]; clag = x[11]; ilag = x[12]; nlag = x[13]; llag = x[14];

a=x[1]; k = x[2]; y = x[3]; ¢ = x[4]; i = x[5]; n = x[6]; | = x[7];
alp = p[1]; bet = p[2]; del = p[3]; rh = p[4]; sige= p[5]; ph = p[6]; ps = p[7];
cfac = ps*(1-ph)-1; Ifac = (1-ps)*(1-ph);
fx =y-a-alp*k - (1 -alp)*n;
retp(fx);

endp;

Perturbation

DND

Linear Approx
Second-Order

Approximation

Code

mation



SRC Bits, cont.

proc(1)=Sys(x);
procvec=&Sys1~&Sys2~ & Sys37&Sys4~ & Sys5~ & Sys6~ &Sys7;

// Points to procedures for calculating Hessian matrices
retp(Sys1(x)[Sys2(x)[Sys3(x)|Sys4(x)|Sys5(x)|Sys6(x)|Sys7(x));

// Model equations are evaluated at steady states and stacked

endp;

Perturbation

DND

Linear Approximatic

ond-Order

Approximation

Code



Perturbation

Key Elements of the Body Code

DND

» First and second derivatives of F (s, o)

> First-order model approximation ala Sims

Mapping x;+1 = Fx; +GU¢y1 into

¢ = CSt, Code

st+1 = s



Perturbation

Body Code, cont.

DND

» Differentiating [Fs (5, O)]J' = 0 with respect to s, solving
for
¢ss (5,0), Sss (5,0) .
» Differentiating F, (5,0) = 0 with respect to o, solving

fOI’ Code

o (5,0), seo (5,0) .



Perturbation

Final Step: Construct Policy Functions

DND

Having obtained (cs, Ss, Css, Sss, Coor Soo) , We map these into
the coefficients of the second-order Taylor Series
approximations of ¢ (s,0), s(s,0).
Code



Perturbation

Final Step

proc spc_quad_of _s(s,sig);

DND

// constructs policy function using quadratic approximation

// inputs are levels of s; outputs are levels of sp, ¢

local stilde,s2tilde,conttilde,sptilde,cont,sp,ii;

stilde = In(s./ss[1:nstates]);

s2tilde = stilde*stilde’;

conttilde=zeros(ncontrols,1);

sptilde=zeros(nstates,1);

ii=1; do while ii<=nstates;
conttilde = conttilde + 0.5*getMatrix(gxx[.,.,.].ii)*s2tildelii,.]"; Code
sptilde = sptilde + 0.5*getMatrix(hss[.,.,.]ii)*s2tilde[ii,.]";
ii=ii+1;endo;

conttilde = gx*stilde + conttilde + 0.5*gss*sig"2;

sptilde = hx*stilde + sptilde + 0.5*%hss*sig"2;

cont = ss[nstates+1:nvars].¥exp(conttilde);

sp = ss[1l:nstates].*exp(sptilde);

retp(sp|cont);

endp;
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